

The 5-phase method

Andy McNeil, LBNL Radiance Workshop 11 August 2013

Why do we need more %@#!\$ phases?

3-phase simulation result

5-phase simulation result

- The three-phase method disperses energy passing through the window.
- Particularly evident with direct solar component.
- Five-phase method uses high-resolution BSDF or actual BSDF geometry for direct solar component.

Why can't we do a daylight coefficient simulation with CFS?

- Sky is a glow material stochastically sampled
- BSDF rays are emitted based on importance
- No deterministic rays for sun

The Equations

The 3-Phase Equation:

$$I_{3ph} = VTDS$$

The 5-phase Equation:

$I_{5ph} = VTDS - V_dTD_dS_d + C_{ds}S_{sun}$

Graphically

$I_{5ph} = VTDS - V_dTD_dS_d + C_{ds}S_{sun}$

Graphically

First Term: 3-phase (review)

V = View Matrix (interior)

T = Transmission Matrix (BSDF)

D = Daylight Matrix (exterior)

S = Sky Matrix

Sky matrix (S)

A sky vector contains average sky luminance in a discretized patch. A sky matrix is a series of sky vectors encompassing many time steps.

gendaymtx was recently added to Radiance to create a sky matrix from a *.wea weather data file.

Daylight matrix (D)

The daylight matrix contains coefficients relating energy leaving sky patches with energy incident on a window in a klems directional bin.

An building with nearby obstruction

Depiction of Daylight matrix values for one sky patch.

Transmission matrix (T) / BSDF

The transmission matrix contains coefficients relating energy incident on a window and energy leaving a window in Klems directional bins.

View matrix (V)

The view matrix contains coefficients relating energy leaving a window in klems direction bins energy incident at a sensor point or image pixel.

Recommendations for View matrix

- Use glow material for window geometry improves sampling of large / nearby windows.
- Increase -ad substantially
- Set -lw to ad⁻¹

parameter	default setting	recommended*
ab	1	9
ad	350	16,384
lw	2.00E-03	6.10e-5 (ad ⁻¹)

^{*} recommendations based on BRE validation space

Second Term:

Direct component of 3-phase

V_d = Direct View Matrix (interior)

T = Transmission Matrix (BSDF)

D_d = Direct Daylight Matrix (exterior)

S_d = Direct Sky Matrix

Direct Sky Matrix (S_d)

The direct sky matrix contains only luminance from the sun.

gendaymtx has a -d option to generate a direct only sky matrix.

Daylight matrix (Dd)

The daylight matrix contains coefficients relating energy leaving sky patches with energy incident on a window in a klems directional bin, without any external inter-reflection.

rcontrib is used with -ab 0

Even with -ab 0 specular reflections are included. This is not desired so materials need to be modified for this model.

So we create a material called 'black' and change materials of all geometry to black (the reason for using black will make sense later). to do this we'll use:

xform -m black geom.rad | oconv genkelmsamp | rcontrib -ab 0

Direct View matrix (V_d)

The view matrix contains coefficients relating energy leaving a window in klems direction bins that is directly incident at a sensor point or image pixel.

rcontrib is used with -ab 1

As with the direct daylight matrix, specular reflections will be included (which is unwanted) so we'll have to change the materials in the model.

xform -m black geom.rad | oconv rcontrib -ab 1

Third Term: Direct sun component

C_{ds} = Sun Coefficient Matrix

 $S_{sun} = Sun Matrix$

Generating suns

We need a radiance geometry file containing lots of suns centered in Reinhart sky patches.

- reinsrc.cal
- rcalc

echo void light solar 0 0 3 1e6 1e6 1e6 > suns.rad

```
cnt 5185 | rcalc -e MF:6 -f reinsrc.cal \
    -e Rbin=recno -o 'solar source sun 0 0 4 \
    ${ Dx } ${ Dy } ${ Dz } 0.533' >> suns.rad
```


Fisheye rendering looking up at a sky full of suns. These suns use the Reinhart MF:6 sky patches.

Sun Matrix

The sun matrix used in the third term of the 5-phase equation.

gendaymtx has a secret option for creating the sunmatrix:

- Closest sun position is used per timestep (one position instead of three patches).
- A factor is included to compensate for the solid angle of reinhart patch vs. angular source.

Direct Sun Coefficient Matrix - sensor points

Fenestration Model:

- Klems BSDF + Proxied geometry
- Tensor Tree BSDF + Proxied geometry
- Tensor Tree BSDF w/o proxied geometry

All Black Materials:

We want ambient rays to sample the BSDF for off angle transmission: **-ab 1**

When an ambient sample is sent, direct samples are sent from the termination of the ambient rays: we don't want this behavior

All-black geometry prevents the subsequent direct sample rays from affecting the result.

initial direct rayambient rayspawned direct rayunwanted direct ray

Direct Sun Coefficient Matrix - renderings

Preventing unwanted rays gets more complex with renderings - a black model produces a black luminance rendering.

Step 1 - generate a illuminance coefficient rendering with black model:

vwrays | rcontrib -i

Step 2 - generate a material reflectance map - each pixel is equal to the material reflectance divided by pi:

rpict -av 0.31831 0.31831 0.31831

Step 3 - multiply step 1 times step 2.

This workaround assumes all reflectances are lambertian

This is terribly awkward. I'm still looking for a better way...

Putting it all together

```
dctimestep view.vmx T.xml daylight.dmx city.smx > 1term.dat
dctimestep view_direct.vmx T.xml daylight_direct.dmx city_direct.smx > 2term.dat
dctimestep suncoefficient.mtx city_ds.smx > 3term.dat
```

```
rlam -if3 i_3ph.dat i_ds3ph.dat i_ds5ph.dat | \
rcalc -if9 -e 'r=$1-$4+$7;g=$2-$5+$8;b=$3-$6+$9' \
-e '$1=179*(.265*r+.670*g+.065*b)' | \
awk '{printf("%f\t",$1);if(NR%8760==0) printf("\n")}' > illum.txt
```

Again, kinda messy.

Does you head hurt? Mine does.

An Example

Using the model from Axel's tutorial

Fenestration: clear glazing with venetian blinds.

Creating BSDFs

genBSDF +f +b -geom meter -dim 0.5 3.5 1 2 -.3 0 -t4 5 bsdf/fullwindow.rad > bsdf/fullwindow_t45.xml

bsdf2klems bsdf/fullwindow_t45.xml > bsdf/fullwindow_klems.xml (converts tensor tree to klems)

or

genBSDF -n 4 +f +b -geom meter -dim 0.5 3.5 1 2 -.3 0 bsdf/fullwindow.rad > bsdf/fullwindow_klems.xml

Create view matrix and daylight matrix surfaces


```
#objects/viewmtxsurf.rad void glow viewsurf 0 0 4 1 1 1 0 viewsurf polygon inside 0 0 12 0.5 0 1 0.5 0 2 3.5 0 2 3.5 0 1
```

```
#objects/daymtxsurf.rad
void glow daymtxsurf
0
0
4 1 1 1 0

daymtxsurf polygon outside
0
0
12 0.5 0 1
0.5 0 2
3.5 0 2
3.5 0 1
```

The view matrix surface will play double duty as the BSDF surface:

```
#objects/glazing_bsdf.rad
void BSDF BSDFproxy
6 0.24 bsdf/fullwindow_t45.xml 0 0 1 .
0
0
BSDFproxy polygon inside
0
0
12 0.5 0 1
0.5 0 2
3.5 0 1
```

Generating View Matrices - sensor points

View Matrix:

```
oconv materials/testroom.mat objects/* skies/sky_white.rad objects/viewmtxsurf.rad \ objects/daymtxsurf.rad > octs/model_3ph.oct
```

```
rcontrib < data/photocells.pts -f klems_int.cal -b kbinS -bn Nkbins -m viewsurf \
-I+ -ab 10 -ad 65536 -lw 1.52e-5 octs/model_3ph.oct > matrices/viewmatrix.vmx
```

Direct View Matrix:

```
xform -m black objects/testroom_Swall.rad objects/testroom.rad objects/ground.rad | \
   oconv materials/testroom.mat - objects/viewmtxsurf.rad objects/daymtxsurf.rad \
   > octs/model_black.oct
```

```
rcontrib < data/photocells.pts -f klems_int.cal -b kbinS -bn Nkbins -m viewsurf \
-I+ -ab 1 -ad 65536 -lw 1.52e-5 octs/model_black.oct > matrices/viewmatrix_direct.vmx
```

Generating Daylight Matrices

Daylight Matrix:

```
genklemsamp -c 1000 -vd 0 -1 0 objects/daymtxsurf.rad | \
rcontrib -c 1000 -ab 2 -ad 1024 -e MF:1 -f reinhart.cal -b rbin -bn Nrbins -m sky_glow \
octs/model_3ph.oct > matrices/daylightmatrix.dmx
```

Direct Daylight Matrix:

```
genklemsamp -c 1000 -vd 0 -1 0 objects/daymtxsurf.rad | \
rcontrib -c 1000 -ab 0 -e MF:1 -f reinhart.cal -b rbin -bn Nrbins -m sky_glow \
octs/model_black.oct > matrices/daylightmatrix_direct.dmx
```

Generating Sun Coefficient Matrix - sensor points

First the suns:

```
echo void light solar 0 0 3 1e6 1e6 1e6 > skies/suns.rad
```

```
cnt 5185 | rcalc -e MF:6 -f reinsrc.cal -e Rbin=recno \
-o 'solar source sun 0 0 4 ${ Dx } ${ Dy } ${ Dz } 0.533' >> skies/suns.rad
```

Then the octree:

Finally the Coefficient Matrix:

```
rtcontrib < data/photocells.pts -I -ab 1 -ad 65536 -lw 1.52e-5 -dc 1 -dt 0 -dj 1 -st 1 -ss 0 -faf \
-e MF:6 -f reinhart.cal -b rbin -bn Nrbins -m solar \
octs/model_suns.oct > matrices/directsun.dsmx
```

Generating Sky Matrices

First convert an epw file to wea:

epw2wea skies/USA_CA_Oakland.Intl.AP.724930_TMY3.epw skies/OakLand.wea

Then the three sky matrices:

Normal sky matrix:

gendaymtx -of skies/OakLand.wea > matrices/OakLand.smx

Direct only sky matrix:

gendaymtx -of -d skies/OakLand.wea > matrices/OakLand_direct.smx

Direct sun sky matrix

gendaymtx -5 -d -m 6 -of skies/OakLand.wea > matrices/OakLand_direct_m6.smx

Obtaining a result

First term:

dctimestep -n 8760 -if matrices/viewmatrix.vmx bsdf/fullwindow.xml \ matrices/daylightmatrix.dmx matrices/OakLand.smx > i_3ph.txt

Second term:

dctimestep -n 8760 -if matrices/viewmatrix_direct.vmx bsdf/fullwindow.xml \
matrices/daylightmatrix_direct.dmx matrices/OakLand_direct.smx > i_ds3ph.txt

Third term:

dctimestep -n 8760 -if matrices/directsun.dsmx matrices/OakLand_direct_m8.smx \ > i_ds5ph.txt

Obtaining a result - combining the terms

Creating unformatted binary data files:

Combining the files and doing the calculation:

```
rlam -if3 i_3ph.dat i_ds3ph.dat i_ds5ph.dat | \ rcalc -if9 -e 'r=$1-$4+$7;g=$2-$5+$8;b=$3-$6+$9' \ -e '$1=179*(.265*r+.670*g+.065*b)' | \ awk '{printf("%f\t",$1);if(NR%8760==0) printf("\n")}' > illum.txt
```

And Finally an illuminance result

Generating View Matrices - Renderings

View Matrix:

```
vwrays -vf views/back.vf -ff -x 500 -y 500 \
| rcontrib `vwrays -vf views/back.vf -x 500 -y 500 -d` -ffc -fo -o viewpics/back_%03d.hdr \
| -f klems_int.cal -b kbinS -bn Nkbins -m viewsurf -ab 10 -ad 65536 -lw 1.52e-5 \
| octs/model_3ph.oct
```

Direct View Matrix:

```
vwrays -vf views/back.vf -ff -x 500 -y 500 \
| rcontrib `vwrays -vf views/back.vf -x 500 -y 500 -d` -ffc -fo -o viewpics_dir/back_%03d.hdr \
| -f klems_int.cal -b kbinS -bn Nkbins -m viewsurf \
| -ab 1 -ad 65536 -lw 1.52e-5 octs/model_black.oct
```

Rendered View Matrix - example

Direct View Matrix

Generating Sun Coefficient Matrix - Renderings

First the coefficient renderings:

Then the material map rendering:

```
rpict -x 500 -y 500 -vf views/back.vf -av 0.31831 0.31831 0.31831 -aa 0 octs/model_3ph.oct \
> materialmap.hdr
```

Sun Coefficient Rendering Example

Sun Coefficient Rendering

Material Map Rendering

Obtaining a result - Renderings

First term:

dctimestep -n 8760 -if -o hourlypics/back_%04d.hdr viewpics/back_%03d.hdr \bsdf/fullwindow.xml matrices/daylightmatrix.dmx matrices/OakLand.smx

Second term:

dctimestep -n 8760 -if -o hourlypics_dir/back_%04d.hdr viewpics_dir/back_%03d.hdr \bsdf/fullwindow.xml matrices/daylightmatrix_direct.dmx matrices/OakLand_direct.smx

Third term:

dctimestep -n 8760 -if -o hourlypics_ds/back_%04d.hdr viewpics_ds/back_%04d.hdr \
matrices/OakLand_direct_m6.smx

First Term (three-phase result)

Third Term

Second Term

Five-phase Result

What does the future hold?

- Five-phase simulation
 - Integration in DAYSIM providing support for CFS
 - Openstudio/COMFEN other tools via DAYSIM
 - Scripting / command line? only for super hardcore (I'd rather not...)
- BSDF Data
 - Unhappy with the lack of independent testing for BSDF?
 - LBNL will start to offer BSDF measurement services for a fee to help kick start the industry.