High-Performance Facades: Designing Office Building Facades to Enhance Indoor Daylighting Performance

Mahmoud Islam Gadelhak

Architect, Teaching Assistant | Ain Shams University

M.Sc. Thesis Committee

Prof. Dr. Yasser Mansour (Advisor)

Prof. Dr. Hanan Mostafa Sabry (Advisor)

Prof. Dr. Morad Abdelmohsen (Examiner)

Prof. Dr, Ahmed Sherif (Examiner)

Motivation

Building skins shouldn't be just designed only for its aesthetics aspects but also as a functioning element in the building.

The research aims to:

- -Define guidelines for using daylighting systems to achieve high performance office building facades.
- -Explore an integrated framework or methodology for integrating computational and building performance simulation tools.

^{*}Figures copyright: Lecture presentation Prof. G. Z. Brown

Shading and Daylight Redirecting Systems:

Daylighting Performance Analysis and Guidelines

2 Integrating Daylighting and Energy Consumption Simulations

Integrating Computational and Building Performance Simulation Techniques for Optimized Facade Designs

Gadelhak M., (2013) "High-Performance Facades: Designing Office Building Facades to Enhance Indoor Daylighting Performance" M.Sc. Thesis, Ain Shams University.

Shading Devices Design and Parameters

Location and Context

The case study was chosen to be located in the city of Cairo, Egypt (30° N- 31° E).

Cairo is endowed with a clear sunny sky for almost all the year round.

Base Case Parameters

A typical side-lit office room space 4.00 m wide and 6.00 m deep rectangular space, with 3.00 m clear height. The office space was assumed to have 3.60m wide and 1.80 m high window.

Modeled Cases

Different daylighting systems were investigated for the South, and East/West orientations. Three shading systems and two daylight redirecting systems were studied..

Simulation Parameters and Assumptions

The Daylight Availability metric was chosen as evaluating criteria.

Daylit - Partially daylit - Over lit

"Low Performance": (50%≤ daylit area <65%).

"Medium Performance": (65%≤ daylit area <75%).

"High Performance": (75%≤ daylit area).

Daylight Glare Probability (DGP)

Simulation Workflow and Modeling Software

Parametric models were created using Grasshopper a plug-in for Rhinoceros modeling software. Simulations were conducted using Diva-for-Rhino which was used to interface Radiance and Daysim for annual simulation and illuminance computation, and Evalglare for calculating the Daylight Glare Probability (DGP)

Base Case Simulation Results

South Orientation

57% 57% 43% Daylit Area 43% 0% Overlit Area **80-100 60-80 40-60** 20-40 ■ 0-20

Sky condition and Sun angles

Cairo, Egypt 30 N, 31.2 E

	Winter	Spring	Summer	Autumn	Annual Mean	Percentage
Days with Clear Sky (Monthly Mean)	23	28	31	28	27	90%
Days with Cloud Sky (Monthly Mean)	7	3	0	2	3	10%

Horizontal sun breakers

- Vertical shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° downwards, 0°, and 15° upwards
- Number of slats: single, double and triple

Frame# 00034; Value = 34.00

South Orientation

Horizontal sun breakers

- Vertical shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° downwards, 0°, and 15° upwards
- Number of slats: single, double and triple

South Orientation

Three slats, horizontal with 50 ° VSA

70%
Daylit Area

1%
Overlit Area

**80-100
**60-80
**40-60
**20-40
**0-20

Horizontal sun breakers

- Vertical shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° downwards, 0°, and 15° upwards
- Number of slats: single, double and triple

South Orientation

30%
Highest DGP
Imperceptible
Glare

East Orientation

25% Highest DGP

Vertical sun breakers

- Horizontal shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° downwards, 0°, and 15° upwards
- Number of slats: three, four and five

South Orientation

Vertical sun breakers

The effect of changing three parameters was studied.

- Horizontal shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° North, 0°, and 15° South
- Number of slats: three, four and five

0-20

Solar Screens

The effect of changing three parameters was studied.

- Vertical shading angle: 70°, 60°, 50° and 40°

- Perforation ratio: 90%, 80%, and 70%

- Aspect ratio (Horizontal: Vertical): 1:1, 2:1 and 4:1

South Orientation

Solar Screens

The effect of changing three parameters was studied.

- Vertical shading angle: 70°, 60°, 50° and 40°
- Perforation ratio: 90%, 80%, and 70%
- Aspect ratio (Horizontal: Vertical): 1:1, 2:1 and 4:1

South Orientation

50% Daylit Area

0%

Overlit Area

East Orientation

90% perforation, 4:1, with 50 ° VSA

■ 40-60 ■ 20-40

■ 0-20

60-80

40-60

20-40

0-20

Light Shelves

The effect of changing three parameters was studied.

- External light shelf depth:, 60 cm, 80 cm, 100 cm and 120 cm
- Internal light shelf depth: 0, 30 cm, 60 cm, and 80 cm
- External light shelf rotation angle: 0°, 10°, 20°, and 30°

South Orientation

Light Shelves

The effect of changing three parameters was studied.

- External light shelf depth:, 60 cm, 80 cm, 100 cm and 120 cm
- Internal light shelf depth: 0, 30 cm, 60 cm, and 80 cm
- External light shelf rotation angle: 0°, 10°, 20°, and 30°

Louvers and Blinds

The louvers were rotated in two different ways:

The conventional way: all louver slats were rotated in the same direction

The combined way: where every other louver have the same rotation angle.

- Vertical shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° downwards, 0°, and 15° upwards

South Orientation

Louvers and Blinds

The louvers were rotated in two different ways:

The conventional way: all louver slats were rotated in the same direction

The combined way: where every other louver have the same rotation angle.

- Vertical shading angle: 70°, 60°, 50° and 40°
- Rotation angles: 15° downwards, 0°, and 15° upwards

South Orientation

Conventional, 15° downwards, 40 ° VSA

67% Daylit Area

0%

East Orientation

Conventional, 15° downwards, 40 ° VSA

51% Daylit Area 0%

Overlit Area

20-40

■ 0-20

40-60

20-40

0-20

Comparison between the five systems South Orientation

Gadelhak M., Aly M., and Sabry H. "High Performance Facades: The Effect of Sun Breaker on Daylighting Performance and Energy Consumption in South Oriented Office Spaces" 2013 Architectural Engineering Institute (AEI) Conference Penn State College, PA on April 3 - 5th.

"Integrating Computational and Building Performance Simulation Techniques for Optimized Facade Designs" eCAADe 2013 conference "Computation and Performance", TU Delft, Delft, The Netherlands, September 18-20.

Generative Design, Optimization and Form Finding

Generative Design

Optimization and Form finding

Generative Design, Optimization and Form Finding

Optimization Methodology

Case 1: Light shelf and Solar screen Combination

Various combinations of light shelves and solar screens were tested. total number of possible combinations was **2,304 cases** for six different variables.

Solar Screen Variables

- Vertical shading angle
- -Perforation ratio
- Aspect ratio

Light Shelf Variables

- External light shelf depth
- -Internal light shelf depth
- External light shelf rotation angle

Case 1: Light shelf and Solar screen Combination

Various combinations of light shelves and solar screens were tested. total number of possible combinations was **2,304 cases** for six different variables.

Solar Screen Variables

- Vertical shading angle
- -Perforation ratio
- Aspect ratio

Light Shelf Variables

- External light shelf depth
- -Internal light shelf depth
- External light shelf rotation angle

Case 1: Light shelf and Solar screen Combination

Various combinations of light shelves and solar screens were tested the total number of possible combinations was **2,304 cases** for six different variables. To avoid simulating and analyzing all the cases Galapagos a genetic-algorithm evolutionary solver was used.

Solar Screen Variables

- Vertical shading angle
- -Perforation ratio
- Aspect ratio

Light Shelf Variables

- External light shelf depth
- -Internal light shelf depth
- External light shelf rotation angle

64%

Daylit Area

0%

Overlit Area

62%
Daylit Are

Daylit Area

3%

Overlit Area

62%

Daylit Area

7%

Overlit Area

61%

Daylit Area

6%

Overlit Area

Free Form Gills Surface

The façade was divided into upper part where a curved light shelf was modeled. In the lower part a free form configuration "Gills surface" divided into four curved panels. Total number of possible solutions exceeds 4 millions.

Variables for each curve

- Curve height
- -Peak point position

The façade was divided into upper part where a curved light shelf was modeled. In the lower part a free form configuration "Gills surface" divided into four curved panels. Total number of possible solutions exceeds 4 millions.

Variables for each curve

- Curve height
- -Peak point position

The façade was divided into upper part where a curved light shelf was modeled. In the lower part a free form configuration "Gills surface" divided into four curved panels. Total number of possible solutions exceeds 4 millions.

Variables for each curve

- Curve height
- -Peak point position

56%
Daylit Area
2%
Overlit Area

51%
Daylit Area
3%
Overlit Area

Future Work

Future Work

Research can extend to cover other environmental aspects to achieve an integrated high performance facades.

- Energy consumption/ Thermal comfort/ Natural ventilation/ Digital fabrication, paneling and structure aspects/ Life cycle cost

Investigating the use of dynamic and kinetic systems for more adaptive solutions and comparing the feasibility of dynamic systems and fixed systems may give a better guide for designing even more dynamic and higher performance facades.

-Finally, verification of the results of this study by real life measurements can strengthen the thesis recommendations.

