Computing Resources

- First Compute Nodes – 1996
 - goal: being able to run Autocad and Radiance

- Standalone Compute Nodes – 1997
 - goal: offload rendering to standalone hardware

- HPC Clustering
 - goal: batch multiple jobs over cluster, run and forget
 - OpenMosix - 2003
 - OpenSSI - 2004
 - Warewulf - 2006
 - http://warewulf.lbl.gov
 - http://metacluster.lbl.gov

- AWS EC2 – 2008
 - goal: cost, power, availability, scalability, don't want to own hardware
Why use AWS?

- **cost**
 - fixed rate hourly use
 - biddable (spot) rate use
 - fixed rate for storage GB

- **flexibility**
 - power – wide range of instance types
 - availability – when you need them
 - scalability – how many do you need

- **Radiance on AWS**
 - cost and flexibility
What are the key components to AWS?

- **EC2 – Elastic Compute Cloud**
 - AMI – Amazon Machine Image
 - Types – hardware specs
 - http://aws.amazon.com/ec2/pricing/#on-demand
 - http://aws.amazon.com/ec2/pricing/#spot
 - Instance – a running instance of an AMI on a selected type

- **EBS – Elastic Block Store**
 - block level storage - $0.10/GB-month

- **Security**
 - public key encryption
 - security group firewall
How to setup Radiance and AWS

- Setup an AWS account
- Launch a default AMI
- Install Radiance and any other desired tools
- Create a new custom AMI from the running instance
Creating a Custom AMI

- launch an instance based on a default AMI (ex)
 - select default ami
 - Ubuntu 13.04 Server
 - Ubuntu 13.04 Server for HVM Instances
 - select a low cost instance type
 - t1.micro
 - m3.xlarge
 - add an EBS volume for storage of simulation/visualization data
 - login and setup a default user
 - configure ssh
 - setup the EBS volume for use
Install Radiance

- install prerequisites for compiling and running Radiance
 - csh emacs libX11-dev g++ tk make
 - optional - imagemagick
- setup directories (Rlib format)
- install source
- edit pcomb.c for file open size at 4096
- copy additional cal file to radiance lib dir – ray/src/cal/cal
- setup .profile for radiance
 - PATH and RAYPATH
 - ulimit -n 4096
- create an AMI from the running instance
 - creates snapshot that captures all the changes customizations to the default instance
How to run Radiance jobs on AWS

• basic approach
 • ssh to connect
 • scp to transfer data
 • run jobs with nohup
 • terminate vs stop

• fancy approach
 • automated – cli
 – instance startup
 – data transfer in
 – job run
 – data transfer out
 – instance terminate
Closing

- things to watch for
 - leaving volumes hanging around

- benchmark
 - http://markjstock.org/pages/rad_bench.html#smp_results
 - seem to be hitting limit of processing spawning
 - would be interesting to test rtrace with this
 - what would be a suitable benchmark for rcontrib

- further work
 - using a ramdisk on instance with large memory
 - using Dropbox, Ubuntu One for xfer in/out automation
 - clustering on AWS
Selected Works
Selected Works
Selected Works
Selected Works
Selected Works
Selected Works

- IBL sources
- LED sources at selected spandrel conditions
- Interior down lights at corner condition
- Office lights (randomized) at “punched” condition
- Lighting at atrium/lobby condition
- Randomized office lighting at typical conditions
- “background” HDRI
- Ambient term
- Tone mapping for human visual sensitivity
Selected Works
Selected Works
Thanks!