Application of RADIANCE for Development of Future Solutions

Case Studies of Virtual Natural Lighting Solutions and Photocatalytic Oxidation Modelling

Rizki A. Mangkuto
Ruben S. Pelzers

Unit Building Physics and Services
Department of the Built Environment
Eindhoven University of Technology
The built environment…

• In the future, the built environment will need to deal not only with “energy saving”, but also “very high-quality indoor environment”
 • Healthy
 • Productive
 • Comfortable
 • Energy-producing
 • …..
• Solutions are needed!
The future is so uncertain and highly complex:
The need to predict the performance of future solutions
→ using computational simulation tools
→ e.g. RADIANCE!

Radiance-online.org (2012)
Some familiar terms

- Lighting
- Wavelength
- Uniformity
- Distribution
- Building
- Simulation

- Light source
- Daylight
- Irradiance
- Perception
- Performance

- Raytracing
- Visual comfort
- Sky model
- Preference
- Optimisation

- Sustainability
- Material
- Glare index
- Behaviour
- Contrasts

- Preference
- Luminous intensity
- Uncertainty
Case #1

Virtual Natural Lighting Solutions

Rizki A. Mangkuto
Myriam B.C. Aries
Evert J. van Loenen
Jan L.M. Hensen

Unit Building Physics and Services
Department of the Built Environment
Eindhoven University of Technology
The future is so uncertain and highly complex: The need to predict the performance of future solutions → using computational simulation tools. Low availability of natural (day-)light!
The idea
Approach towards VNLS (model)

Approach towards VNLS (model)

View complexity

Light directionality

With view, diffuse
Without view, diffuse
With view, directional
Without view, directional
Model without view, diffuse

- Typically diffuse light distribution
- Applied for situations where view is not considered the most important thing, e.g. when comparing energy consumption.

Philips Lighting (2007)
De Vries et al. (2009)
Smolders & de Kort (2012)
• For example, real windows under CIE overcast sky:
 gensky -c -b 22.9
• ...compared to virtual windows:
 light 11.856
 11.856 11.856
• Combined with general lighting ETAP luminaire 2x28 W
Model without view, diffuse – (3)

Northwest

Southwest

West-1

West-2

Illuminance (lx)

Distance from window (m)

Real windows

Virtual windows

Real windows

Virtual windows
• Typically (also) diffuse light distribution, but with image projected or displayed.
• Applied for situations where view is considered influential, e.g. when comparing glare perception from various view types.
Model with view, diffuse – (2)

• *For example*, comparing 5 different images as viewing scene

IJsselsteijn et al. (2008)
Model with view, diffuse – (3)

- 2D image mapped on light material

Source brightness without and with occlusion

Maintain 40 lx on the desk

Ambience parameters: –ab 3 –aa 0.15 –ar 128 –ad 512 –as 256
Model with view, diffuse – (4)
• Still in conceptual model.
• View is simplified: green “ground” and blue “sky”.
• Focused on directional light from the “ground” to the ceiling.
• Applied for optimising space availability and uniformity.
Model with simple view, directional – (2)

- **Input variables:**
 - Interval of tilt angle (°): 1.0; 1.5; 2.0
 - Beam angle (°): 38; 76; 114
 - Total luminous flux of the “sky” (lm): 6200, 11100, 19900
 - Distance between windows (m): 0; 0.75

Ambience parameters: –ab 4 –aa 0.15 –ar 128 –ad 512 –as 256 –ds 0.2
Model with simple view, directional – (3)

- **Output variables:**
 - **Space availability:**
 \[
 \%A = \frac{n(E \geq 500 \text{ lx})}{N} \times 100\% \quad ; \quad N = 1944
 \]
 - **Uniformity:**
 \[
 U_0 = \frac{E_{\text{min}}}{E_{\text{av}}}
 \]
 - **Average ground contribution on the ceiling:**
 \[
 \%G_{av} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{E_{\text{ground-i}}}{E_{\text{total-i}}} \right] \times 100\% \quad ; \quad N = 10
 \]
 - **Average probability of discomfort glare:**
 \[
 PDG_{av} = \frac{1}{4} \left(DGP + DGI_n + UGR_n + CGI_n \right)
 \]
 where
 \[
 DGI_n = 0.01452 \times DGI; \quad UGR_n = 0.01607 \times UGR;
 \]
 \[
 CGI_n = 0.01607 \times CGI; \quad (\text{Jakubiec} \& \text{Reinhart}, 2012)
 \]
Compared to a similar scene where VNLS is replaced with real windows under CIE overcast sky, with equal average surface luminance.

The proposed criteria:

- Space availability: $\%A_{\text{VNLS}} > \%A_{\text{RW}}$
- Uniformity: $U_{0_{\text{VNLS}}} \geq U_{0_{\text{RW}}}$
- Average ground contribution on the ceiling: $0.9(\%G_{av RW}) \leq \%G_{av VNLS} \leq 1.1(\%G_{av RW})$
- Average probability of discomfort glare: $PDG_{av VNLS} \leq PDG_{av RW}$
- Average surface luminance: $L_{av} \leq 3200 \text{ cd/m}^2$
Model with simple view, directional – (5)

- Probability of discomfort glare at position A, B, C:

<table>
<thead>
<tr>
<th>Type</th>
<th>Conf.</th>
<th>IA (°)</th>
<th>BA (°)</th>
<th>(\Phi) (lm)</th>
<th>Pos.</th>
<th>DGP</th>
<th>DGI(_n)</th>
<th>UGR(_n)</th>
<th>CGI(_n)</th>
<th>PDG(_{av})</th>
<th>Stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNLS</td>
<td>1a</td>
<td>2.0</td>
<td>76</td>
<td>11100</td>
<td>A</td>
<td>0.24</td>
<td>0.21</td>
<td>0.36</td>
<td>0.39</td>
<td>0.30</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>0.21</td>
<td>0.20</td>
<td>0.32</td>
<td>0.35</td>
<td>0.27</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>0.27</td>
<td>0.33</td>
<td>0.46</td>
<td>0.48</td>
<td>0.38</td>
<td>0.10</td>
</tr>
<tr>
<td>RW</td>
<td>1a</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>0.24</td>
<td>0.21</td>
<td>0.35</td>
<td>0.39</td>
<td>0.30</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>0.21</td>
<td>0.19</td>
<td>0.31</td>
<td>0.33</td>
<td>0.26</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>0.26</td>
<td>0.31</td>
<td>0.43</td>
<td>0.45</td>
<td>0.36</td>
<td>0.09</td>
</tr>
</tbody>
</table>

- Position C experiences the largest prob. of discomfort glare
- Standard dev. in VNLS scenes are comparable to those in RW scenes \(\rightarrow\) PDG\(_{av}\) can be used for comparing both VNLS and RW
• Results example of VNLS vs RW

<table>
<thead>
<tr>
<th>Type</th>
<th>Conf.</th>
<th>IA (°)</th>
<th>BA (°)</th>
<th>Φ (lm)</th>
<th>%A</th>
<th>U₀</th>
<th>%G_{av}</th>
<th>PDG_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNLS</td>
<td>1a</td>
<td>2.0</td>
<td>38</td>
<td>11100</td>
<td>28.0</td>
<td>0.37</td>
<td>48.8</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>1a</td>
<td>1.5</td>
<td>38</td>
<td>11100</td>
<td>29.3</td>
<td>0.37</td>
<td>46.8</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>1a</td>
<td>1.0</td>
<td>38</td>
<td>11100</td>
<td>29.9</td>
<td>0.37</td>
<td>44.6</td>
<td>0.35</td>
</tr>
<tr>
<td>RW</td>
<td>1a</td>
<td></td>
<td></td>
<td></td>
<td>14.3</td>
<td>0.18</td>
<td>14.3</td>
<td>0.39</td>
</tr>
<tr>
<td>VNLS</td>
<td>2a</td>
<td>2.0</td>
<td>76</td>
<td>6200</td>
<td>11.5</td>
<td>0.32</td>
<td>49.2</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>1.5</td>
<td>76</td>
<td>6200</td>
<td>9.4</td>
<td>0.33</td>
<td>46.5</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>1.0</td>
<td>114</td>
<td>6200</td>
<td>5.3</td>
<td>0.35</td>
<td>44.1</td>
<td>0.36</td>
</tr>
<tr>
<td>RW</td>
<td>2a</td>
<td></td>
<td></td>
<td></td>
<td>14.7</td>
<td>0.16</td>
<td>14.7</td>
<td>0.40</td>
</tr>
</tbody>
</table>

The images show the luminescence distribution for different configurations.
Model with simple view, directional – (7)

- Most of the VNLS with BA = 114° (wide) satisfy all performance criteria.
- The total luminous flux is highly influential to the space availability.
- The beam angle is highly influential to the uniformity, average ground contribution, and average probability of discomfort glare.
Conclusions & outlook

• As a simulation tool, RADIANCE can be employed for predicting lighting performance of future solutions such as VNLS.

• The modeling approach is driven towards providing good directionality and complex view, while keeping the visual comfort comparable to the real window situation.

• The next steps will be improving all of the lighting aspects, as well as evaluating energy performance of the selected solutions with other simulation tools.
Case #2

Photocatalytic Oxidation Modelling

Ruben S. Pelzers
Qingliang Yu
Rizki A. Mangkuto
Marcel G.C. Loomans
Jos Brouwers

Unit Building Physics and Services
Department of the Built Environment
Eindhoven University of Technology
Indoor Air Quality & Photocatalytic Oxidation

• Indoor Air Quality (IAQ) is important:
 • People in modern urban areas spend 85%-90% of their time indoor
 • Synthetic materials, combustion, human activities, industrial processes can release a range of pollutants, resulting in indoor air pollution
• Pollutants can be removed by source control, increasing ventilation rates or air purification.
• Photocatalytic Oxidation (PCO) is a potential technology for (passive) indoor air purification.
Photocatalytic Oxidation (PCO) modeling

• Previous research:
 1. Development of a kinetic model for NO$_x$ (inorganic compound)
 2. Implementation of the kinetic model in a Computation Fluid Dynamics (CFD) model
 H.A. Cubillos Sanabria, (2011)

• No radiance model was applied, causing to:
 - Neglect the glass cover in the reactor setup (1)
 - Assume a uniform irradiance distribution during modelling (2)
The concept

- A concept for PCO modelling is proposed, based on the previous research
 - Radiance model
 - Kinetics
 - Computation Fluid Dynamics

Radiance model → Kinetics → Computational Fluid Dynamics → Prediction air purification capability
The framework

Preprocessing
(Input definitions)
- Geometry
- Meshing
- Flow type
- Field equations
- Optical properties materials
- Emission model light sources
- Reaction mechanisms
- Reaction kinetics (Rate limiting steps)
- Fit empirical constants

Processing
(Calculations)
- Continuity Equation
- Turbulence model / Wall function
- Radiance equation
- Momentum Equations
- Kinetic model
- Species Transport Equations

Post-processing
(processing of the results)
- Verification
- Validation
- Report results
First modeling study of the reactor setup

(a) reactor setup

(b) reactor
Overview of the reactor setup model

(main dimensions in [m])

Casing

Luminaire

Mirror

Light sources

Catalyst sample

Reactor

Reactor
• An omnidirectional radiant intensity distribution over the longitudinal axis of the light source model is assumed, expressed in $L_i \text{[Wm}^{-2}\text{sr}^{-1}]$.

![Diagram of light source model]

• The light source model is composed out of a:
 (1) lamp base (no emission)
 (2) border region ($L = L_i/2$)
 (3) main light emitting area ($L = L_i$)
Sampling grid

(a) Reactor setup

(b) Reactor

(c) Sampling grid

\[E_{\text{calibrate}} \left[\frac{W}{m^2} \right] \]
\[h = 185 \text{ mm} \]

\[E_{\text{glass}} \left[\frac{W}{m^2} \right] \]
\[h = 150 \text{ mm} \]

\[E_{\text{catalyst}} \left[\frac{W}{m^2} \right] \]
\[h = 139 \text{ mm} \]

Catalyst sample

Glass

E_{\text{glass}} \left[\frac{W}{m^2} \right]

E_{\text{catalyst}} \left[\frac{W}{m^2} \right]

E_{\text{calibrate}} \left[\frac{W}{m^2} \right]
Transmission coefficient of the glass < 0.9273

Reflection coefficient catalyst surface = 0.88

L₁ = 34.8 W/(m²sr)

(rtrace) -I -ab 5 -dj 1.0 -ds 0.05 -aa 0.1 -ar 256 -st 0.07 -ad 1024 -as 64
Impression: vertical cross-section

\[(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1 \]
Impression: bottom-top & top-bottom view

(rv) -ab 1 -aa 0.3 -dj 1 -ds 0.1
Result of simulation & analytical calculation

\[
\frac{E_{\text{catalyst}}}{E_{\text{glass}}} = \tau_{\text{direct}} + \tau_{\text{indirect}}
\]

\[
\tau_{\text{direct}} = \tau_{\text{glass}}
\]

\[
\tau_{\text{glass}} = \sum_{i=1}^{n} \left(1 - \left(\frac{n_2 - n_1}{n_2 + n_1} \right)^2 \right) \cdot \left(1 - \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 \right) \cdot \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^{4(i-1)}
\]

\[
\tau_{\text{indirect}} = \sum_{i=1}^{n} \left((1 - \tau_{\text{glass}})^i \sigma_{\text{catalyst}}^i \tau_{\text{glass}} \right)
\]

\[
E_{\text{glass}} = \frac{E_{\text{catalyst}}}{(\tau_{\text{direct}} + \tau_{\text{indirect}})}
\]

\[
y = 0.0975x + 0.9004 \quad R^2 = 0.9995
\]

\[
y = 0.0727x + 0.9265 \quad R^2 = 0.9995
\]
Conclusion and outlook

- Both the measurement and the simulations have inaccuracies; the inaccuracy of the stochastic calculation is obtained with statistics.
 - The maximum error of the average values is ~4%, but due to uncertainty the error is raised to ~6%

- The analytical calculation could not provide a correct estimation of the $E_{\text{catalyst}}/E_{\text{glass}}$ ratio. Therefore, an equation from simulated data was derived:
 $$E_{\text{glass}} = (0.0975 \cdot \sigma_{\text{catalyst}} + 0.904) E_{\text{catalyst}}$$
 - The equation can be used to improve the kinetic model of NO$_x$

- Secondary modeling study in which:
 - The improved kinetic model is employed
 - Radiance model is integrated into a CFD model
 - Several cases are simulated in which the PCO is studied, using a benchmark office model for CFD
Questions?