Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Engineering & Architecture

Simulation of reflected sunlight from building façade to the neighbourhood

- Work in progress

Competence Centre Envelopes and Solar Energy **Xiaoming Yang** wissenschaftlicher Mitarbeiter

T direct +41 41 349 39 70 xiaoming.yang@hslu.ch

Horw 9/13/12

11th International Radiance Workshop Copenhagen

Overview

- Background
- Objective
- Method
- Discussion

Background

- -Outdoor glare result of sunlight reflection from building envelope is getting worse and more frequent.
- More high rise building with curtain walls
- Application of energy efficient material with high reflectance
- Free formed façade with concave surfaces

curtain walls

high reflectance material Free formed façade

Hochschule Luzern

Engineering and Architecture

Background

- Current approaches to eliminate the problem
- Regulations:control the use of building materials based on reflectivity alone
- Academic: A study on Walt Disney Concert Hall, fixed view simulation followed by digital process of photographs
- Industry: Glare protractor method based on solar chart and plan view of the assessed building

Objective

- A prediction method for outdoor glare caused by sunlight reflection from building envelope to neighbourhood
- How is the neighbourhood affected
- How does the assessed building envelope generate the effect
- Assist designers to optimize the form of the envelope and make façade material selection

- Calculate contribution of irradiance from each mesh face of the assessed building envelope to testing points around.
- Annual simulation to find worst scenario and overall performance
- Platform: Rhino+Grasshopper for geometry manipulation and optimization
 - DIVA is lovely but *rtrace* –*I* only

- -Approach 1:rtrace
- Find mesh faces which could directly reflect sun into test point
- Send random rays to these mesh faces until the running mean stabilized
- Send random rays to the rest of the mesh faces

- -Approach 2:rtcontrib+sky patches
- Send random rays to each mesh face
- Calculate contribution from each sky patch to each random ray
- Efficient for annual simulation

- -Approach 3:three phase method?
- i = VTDs => i = VRDs(Transmission matrix=>Reflection matrix)
- Less computational cost for changing materials

- -Approach 3:three phase method?
- i = VTDs => i = VRDs

(Transmission matrix=>Reflection matrix)

Less computational cost for changing materials

Hochschule Luzern

Engineering and Architecture

Test case: A specular ring

Rendering using Pmap

Approach 1:rtrace

Contribution from mesh to irradiance at testing point

Approach 2:rtcontrib+sky patches

Contribution from mesh to irradiance at testing point

Irradiance at testing points

Discussion

	Approach 1	Approach 2
Difference to Pmap result	-1.4%	-46.1%

What is wrong?

echo 0 0 0 0 1 | rtcontrib -faa -h -e MF:2 -f reinhart.cal -bn 578 b rbin -ab 1 -ad 8192 -lw 0.0001 -ar 256 -V- -m sky_glow sceneRtcontrib.oct

References

- www.eclipsetints.com
- www.ladowntownnews.com
- www.lasvegassun.com
- www.vidracariasantacatarina.com.br

Questions & Suggestions?