
Complex Fenestration in 
Radiance
Greg Ward, Anyhere Software



Talk Overview

History of complex fenestration in Radiance

WINDOW 6 input to mkillum

Using genBSDF to compute bidirectional scattering 
distribution function for new system

Three-phase DC method for annual simulations

New developments



The History of CFS in 
Radiance

Use illum concept of proxied “secondary sources”

The mkillum program has been around since 1991

Added during sabbatical at EPFL

Turns complex fenestration into proxy sources

Fails for sunlight on curved, specular systems



Proxy (illum)

Output
distribution

Example Space

Indirect ray sees
illum distribution

Eye ray sees
through illum



Specular Sampling
Mr. Sun

Curved
Specular
Surface

Random Sample Ray

Re
fle

ct
ed

 R
ay

Chance of Hitting Sun:
100 thousand to 1



WINDOW 6 Input to 
mkillum
WINDOW 6 supports 4-dimensional BSDF data

New XML format defined by LBNL

145 input directions → 145 output directions

mkillum samples exterior and uses BTDF to 
compute interior illum distribution

Overcomes limitations with specular systems



WINDOW 6 XML File
<?xml version="1.0" encoding="UTF-8"?>
<Layer xmlns="http://windows.lbl.gov" xmlns:xsi="http://www.w3.org/ 
2001/XMLSchema-instance" xsi:schemaLocation="http://windows.lbl.gov
BSDF-v1.2.xsd">
! <Material>
! ! <Name>Name</Name>
! ! <Manufacturer>Manufacturer</Manufacturer>
! ! <Thickness unit="Meter">0.01</Thickness>
! ! <DeviceType>DeviceType</DeviceType>
! ! <ThermalConductivity>1</ThermalConductivity>
! ! <EmissivityFront>0.9</EmissivityFront>
! ! <EmissivityBack>0.9</EmissivityBack>
! ! <TIR>0</TIR>
! ! <Comments>Comments</Comments>
! </Material>
! ! <DataDefinition>
...

! <WavelengthData>
! <Wavelength unit="Integral">NIR</Wavelength>
! <SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum>
! <DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>
! <WavelengthDataBlock>
! ! <WavelengthDataDirection>Transmission Front</WavelengthDataDirection>
! ! <ColumnAngleBasis>LBNL/Klems Full</ColumnAngleBasis>
! ! <RowAngleBasis>LBNL/Klems Full</RowAngleBasis>
! ! <ScatteringDataType>BTDF</ScatteringDataType>
! ! <ScatteringData>
  2.443881,   0.047337,   0.041435,   0.038990,   0.041435,    
0.047337,   0.048413,   0.046964,   0.048413,   0.047337,    
0.040883,   0.035154,   0.031478,   0.030108,   0.031363,    
0.035154,   0.040605,   0.047337,   0.048086,   0.044691,
0.042586,   0.042007,   0.042537,   0.044691,   0.047921,    
0.047337,   0.038892,   0.031273,   0.025227,   0.021345,    
0.020007,   0.021345,   0.025227,   0.031273,   0.038892,
...



Rendering Comparison 1
Radiance reference rendering



Rendering Comparison 2
mkillum from geometry only



Rendering Comparison 3
mkillum using BTDF data from WINDOW 6



Computing BSDFs with 
genBSDF

Uses rtcontrib to sample Radiance model of 
complex fenestration system

Assembles results into WINDOW 6 format XML file

Output usable in WINDOW 6 as well as Radiance

Can include MGF description of CFS geometry



Sample BTDF Data (1)

Light Shelf



Sample BTDF Data (2)

Light Shelf Visualization by Andrew McNeil



Supports arrays

XML embedding<Geometry format="MGF" unit="Meter">
# Y-axis points "up", Z-axis into room, right-handed coordinates
m WhitePlastic =
! rd .7
! rs .02 0
! sides 2
o VenetianBlinds
xf -rx -60 -a 67 -t 0 .03 0
    o Slat
! v v1 =
! ! p -2 0 0
! v v2 =
! ! p 2 0 0
! v v3 =
! ! p 2 0 .04
! v v4 =
! ! p -2 0 .04
! f v1 v2 v3 v4
    o
xf
o
</Geometry>

Sample MGF



No fenestration geometry

Example Results

With blinds geometry



Annual Simulation

Using mkillum with BTDFs is fairly quick, but...

Re-rendering a scene 2000+ times for each hour?

We need something faster...

Can we use daylight coefficients with BTDF data?



Three Phase Method

Phase I:
Light transport from sky patches to window exteriors

Phase II:
Light transport from window interiors to 
measurements (images, illuminance values, etc.)

Phase III (time-step calculation):
sky * exterior * BTDF * interior



Our Matrix Equation



With Generality, There 
Come Challenges
rtcontrib is used both in characterizing the exterior 
D in Phase I, and in computing the interior V in 
Phase II.

It was not specifically designed to do either

Rather, rtcontrib is a general tool for tracking light 
contributions

Some scripts have been written to simplify the 
process, but much is still manual at this stage



Phase I: Compute D

Apply rtcontrib to relate sky patches to incident 
directions on window exterior

Need separate calculation for each orientation and 
major geometric feature

genklemsamp utility generates samples over a 
given window group



Phase I Example

genklemsamp -vd -0.416041763 -0.909345507 0 -c 20000 \
material_detailed.rad bg5wind.rad \

| rtcontrib -c 20000 -faf -f reinhart.cal -b rbin -bn Nrbins -m skyglow \
@rtc_dmx.opt model_dumbsky.oct > SouthGroup.dmx



Phase I Example

genklemsamp -vd -0.416041763 -0.909345507 0 -c 20000 \
material_detailed.rad bg5wind.rad \

| rtcontrib -c 20000 -faf -f reinhart.cal -b rbin -bn Nrbins -m skyglow \
@rtc_dmx.opt model_dumbsky.oct > SouthGroup.dmx

View defines window group orientation

Number of samples per direction must match



Phase I Example

genklemsamp -vd -0.416041763 -0.909345507 0 -c 20000 \
material_detailed.rad bg5wind.rad \

| rtcontrib -c 20000 -faf -f reinhart.cal -b rbin -bn Nrbins -m skyglow \
@rtc_dmx.opt model_dumbsky.oct > SouthGroup.dmx

Window description may contain multiple surfaces, subset of octree

Sky uses Reinhart’s subdivision of Tregenza sky patches for better accuracy

Different window orientations require separate rtcontrib runs



Example Space





Phase II: Compute V

Use rtcontrib to relate sensor locations to exiting 
directions on window interiors

a single run can cover all window groups

klems_int.cal file maps to BTDF coord.



Phase II Example

vwrays -ff -vf back.vf -x 1024 -y 1024 \
| rtcontrib `vwrays -vf back.vf -x 1024 -y 1024 -d` -ffc \
-o comp/back_%s%03d.hdr -f klems_int.cal -bn Nkbins \
-b kbinE -m EastGroup -b kbinS -m SouthGroup \
-b kbinN -m NorthGroup -b kbinW -m WestGroup \
@render.opt model.oct



Phase II Example

vwrays -ff -vf back.vf -x 1024 -y 1024 \
| rtcontrib `vwrays -vf back.vf -x 1024 -y 1024 -d` -ffc \
-o comp/back_%s%03d.hdr -f klems_int.cal -bn Nkbins \
-b kbinE -m EastGroup -b kbinS -m SouthGroup \
-b kbinN -m NorthGroup -b kbinW -m WestGroup \
@render.opt model.oct

The klems_int.cal file defines Klems patches over specific hemispheres

Generating a set of image components



Phase II Example

vwrays -ff -vf back.vf -x 1024 -y 1024 \
| rtcontrib `vwrays -vf back.vf -x 1024 -y 1024 -d` -ffc \
-o comp/back_%s_%03d.hdr -f klems_int.cal -bn Nkbins \
-b kbinE -m EastGroup -b kbinS -m SouthGroup \
-b kbinN -m NorthGroup -b kbinW -m WestGroup \
@render.opt model.oct

What is a reasonable set of rendering parameters?

-ab 4 -ds .05 -dj .7 -ad 2000 -lw 2e-4

• Windows may be sources
• No indirect caching
• One rtcontrib run captures everything



Outgoing Directions for One Window Group



Phase III: Time Step

Use genskyvec to create sky patch vector s

Use dctimestep to multiply it all together

i = VTDs
Result Vector

View Matrix

BTDF
Sky Patch Vector

Daylight Matrix



Phase III Example

gensky 9 21 12:00 -a 37.71 -o 122.21 -m 120 | genskyvec > eq.skv
pcomb ‘!dctimestep comp/back_SouthGroup%03d.hdr blinds1.xml SouthGroup.dmx eq.skv’ \
! ‘!dctimestep comp/back_WestGroup%03d.hdr blinds2.xml WestGroup.dmx eq.skv’ \
! ‘!dctimestep comp/back_NorthGroup%03d.hdr blinds2.xml NorthGroup.dmx eq.skv’ \
! ‘!dctimestep comp/back_EastGroup_%03d.hdr blinds1.xml EastGroup.dmx eq.skv’ \
> back_9-21_1200.hdr

rm eq.skv



Phase III Example

gensky 9 21 12:00 -a 37.71 -o 122.21 -m 120 | genskyvec > eq.skv
pcomb ‘!dctimestep comp/back_SouthGroup%03d.hdr blinds1.xml SouthGroup.dmx eq.skv’ \
! ‘!dctimestep comp/back_WestGroup%03d.hdr blinds2.xml WestGroup.dmx eq.skv’ \
! ‘!dctimestep comp/back_NorthGroup%03d.hdr blinds2.xml NorthGroup.dmx eq.skv’ \
! ‘!dctimestep comp/back_EastGroup_%03d.hdr blinds1.xml EastGroup.dmx eq.skv’ \
> back_9-21_1200.hdr

rm eq.skv

Generate sky vector for noon at the Autumn equinox

Each call to dctimestep computes contributions of one window group

Time to run the above is less than 4 seconds on my laptop



Equinox Simulation



Caveats

Nearby interior and exterior geometry may require 
additional window subdivisions & Phase I runs

Sky resolution trades off runtime with solar shading 
accuracy

Interior and exterior reflections from windows will not 
be associated with different BSDFs



New Developments

Until now, BTDF data (but not BRDF) could be used 
in specific Radiance settings:

mkillum (neglecting interior window reflections)

Annual simulations using 3-phase DC method

Radiance 4.1 supports BSDF data directly

Including new variable-resolution specification



Example Rendering
Measured and Modelled Materials


