Radiance Workshop at LBNL August 25, 2011

Daylighting and Energy Efficient Buildings: Challenges and Opportunities

Stephen Selkowitz

Building Technologies Department

Lawrence Berkeley National Laboratory SESelkowitz@LBL.GOV

Daylight or "Natural Light"

Market Advantage?

Two Contrasting Views of Energy Efficiency

1976 Perspective: Code Official's View of the Ideal Windows

2010 Perspective: Architect's View of the Ideal Windows

Commercial Building Window Energy Use

Vision: "Zero-Energy Building" Facades: Energy Losers --> Neutral --> Suppliers

- Heating climates
 - Reduce heat losses so that ambient solar energy balances and exceeds loss
 - Need lower heat loss technologies
- Cooling climates
 - Reduce cooling loads
 - Static control -> dynamic control
- All climates
 - Replace electric lighting with daylight
- Electricity supply options?
 - Photovoltaics-building skin as power source

Optimizing Energy in Integrated Facades

Dependent on a number of parameters

- Climate
- Orientation
- Building Type
- Fenestration area
- Glass type
- Operations
- Daylight
- Shading
- •

Need to balance between a number of issues

- Energy
- Demand
- Carbon
- Peak Cooling
- Comfort: visual/thermal
- View
- Appearance

 Ideal: Integrated approach to façade-lighting-HVAC building systems to achieve optimum energyefficiency and comfort.

... It's Complicated!!

BERKELEY LAB

Advanced Facades and Daylighting

Program Goals:

Net Zero Energy Balance for New and Retrofit

Enhanced View and Thermal Comfort

Reliable, cost effective operations

Tools to design, optimize, specify, control

Adoption/diffusion throughout industry

Advanced

Technologies:

Sensors;

Controls;

Hi R windows.

Cool coatings;

Switchable coatings;

Automated Shading;

Daylight-redirecting

Operable windows,

Human Factors:

Thermal comfort
Visual comfort
Satisfaction
Performance

Business Case

Manufacturing Installation Commissioning Reliability Cost Decision Tools
Books, Guides
Websites
Simulation Tools
Testbeds

Application:

All climates
All Building types

New-Replacement-Retrofit

Program Activities:

Simulation

Optimization

Lab test

Field Test

Demonstrations

Standards

Partners

Manufacturers

Owners

Architects

Engineers

Specifiers

Code officials

Contractors

Utilities

Using Sunlight Effectively? Electric conversion vs Direct Use

triple glazing, 1 low-E layer, clear U=0.20, SHGC=0.22, VT=0.37

Cold Climates: Chicago, IL al Laboratory

3 Pathways for Use of Glass in Commercial Buildings

Just meet the code

- Small Windows, prescriptive properties, e.g. double
- No special shading or daylighting

Conventional "good" solutions: (prescriptive packages)

- Modest sized windows, skylights
- Double glazing
- Spectrally selective glass
- Manually operated Interior shading
- On-off lighting controls

Architectural Solution with "Transparent Intelligent Façade"

- Highly glazed façade; extended daylighted zone
- Reliable tools reduce risk
- High Performance technology with Systems Integration
- Dynamic, smart control- automated shading, dimmable lights
- Economic from Life cycle perspective
- Optimized for people and for energy, electric demand

Spectrally Selective "Cool" Glazings

- Spectral controltransmit light, reject near-IR heat
- Equal daylight with only 50% of solar gain
- IG to minimize SHGC

Technology:

- Selective Absorbers
 - blue-green tints
- Selective reflectors
 - modified low-E coatings
 - coated glass and plastic
 - Multilayer dielectric

Light to Solar Gain Ratio

Light to Solar
Gain Ratio for
insulating glass
units for all
glasses in
LBNL IGDB

Smart Coatings for Dynamic Control of Windows

Balancing Cooling and Daylighting

- Passive control
 - Photochromic light sensitive
 - Thermochromic heat sensitive
- Active control
 - Liquid Crystal
 - Suspended particle display (SPD)
 - Electrochromic
- Active control preferred; but requires wiring windows for power and control

Engineering and Occupant Response Studies with Switchable Electrochromic Windows

LBNL Façade Field Test Facility

Electrochromic Windows: 20+ years of R&D Progress Towards the

Progress Towards the Marketplace

lationa

(Day)Lighting Control Elements A Systems Integration Issue

Good Lighting Controls (Daylight Dimming) Work

Data from advanced lighting controls demonstration in Emeryville, CA (1990)

rrrrrrì

Energy Use before retrofit:

After retrofit:

South zone:

North zone:

Dimming is 3% of lighting sales

"In God We Trust", All Others Bring Data

An understanding of what to do in the future should be built on a foundation what works and how well, either based on, or derived from, measured performance.

Design intent, expectations, and wishful thinking will not reduce energy and carbon use

LBNL Façade Testbed Facility

Highly instrumented, assess occupant response as well as energy balance

2003-2006

Electrochromic windows w/ daylighting

Industry Advisory Group:

Manufacturers

Glazing, Shading Framing, Lighting Controls

Designers

Architects, Engineers
Specifiers

Owner/Operators

Public, Private

Utilities

2007-20011
Automated Shades
w/ daylighting

al Laboratory

How do we reduce lighting energy use 22 with daylight when there is glare?

Automated daylight blind: concave-up slats with mirrored coating in upper zone and light grey finish in lower zone

System Integration: Investment Tradeoffs

Annual Energy Costs in Perspective

Cost / Sq. M. Floor -Year

• Energy Cost: \$20.00

Maintenance: \$30.00

• Taxes: \$30.00

• Rent: \$300.00

• "Productivity" \$3000.00

Exploring Intelligent Control Systems

The New York Times HQ Building

Testbeds - > Market Impact

Owners program:

- Highly glazed façade gives workers views and allows the city to see "news" at work
- But glare, cooling, visibility etc

Need/Goal:

- Develop integrated, automated shading and dimmable lighting system
 - Affordable, reliable and robust
- Transform the market- push these solutions toward widespread use

Challenge:

- How to develop a workable, affordable integrated hardware/software solution
- How to "guarantee" that such a solution will work in practice

Renzo Piano/ Fox & Fowle/ Gensler/ Flack+Kurtz/ Susan Brady Lighting

Façade Layers

External layer: Fixed

-- Shading, light diffusion

Glazing layer: Fixed

- -- Low-E, spectrally selective
 - thermal control
 - solar gain control
- -- Frit solar, glare control

Internal layer: Dynamic

- Motorized Shade system
 - -- Solar control
 - -- Glare control

Façade Layers: Floor to Floor

floor to desk desk to head head to ceiling

awrence Berkeley National Laboratory

Approach: Test Performance in a Full-Scale Mockup

- Shading, daylighting, employee feedback and constructability: ~4500 something
 mockup
- Concerns with glass facade:
 - Window glare (Tv=0.75)
 - Control of solar gain/cooling
 - Daylight harvesting potential
- Real sun and sky conditions near construction site, 12-month monitored period

North

Developing Shade Control Algorithms for Motorized Shades using Simulation

- Each shade system has its own sensor and motors
- Performance will vary with orientation, floor elevation, view out, and neighboring buildings.
- How to address performance with this variance?
- Build a virtual model of the building in its an context using hourly weather data ulate performance

Simulated Views from 3 of 22 view positions

17

Intelligent Lighting and Shade Control

- Automated Shaded
- (Multifunctional)

Occupied 2007

- Dimmable lighting
- Addressable
- (Affordable)

(1/3 original cost estimate)

(Multifunctional)

New York Times office with dimmable lights and automated shading

High Performance Windows need Skilled Architects & Engineers

- Do architects and engineers have the expertise and/or tools to "optimize" designs of intelligent facades?
- Other impacts:
 - Specification
 - Construction
 - Commissioning and Acceptance
 - Occupant training
 - Facility manager training

Glazing and Façade Simulation Tools

Design Guides, Selection tools

- Homeowners
- Builders, contractors
- Point of sale

Building Design Tools

- Allow integration strategies to be explored
- Allows façade performance to be optimized
- HVAC Façade Lighting tradeoffs
- Explore commissioning and operational issues

Glazing, Window and Façade Tools - Manufacturers

- Essential for design of new products
- Supplement, replace testing virtual product development

US/China Clean Energy Research Center Building Energy Performance Simulation and Monitoring

Source: Energy performance of LEED-NC buildings, NBI, 2008

A few facts:

- Various building types, ages, locations
- 2. Average over all projects not bad
- 3. Max over-predict by 120%
- 4. Max under-predict by 65%
- 5. Almost all under-predicted for low energy designs (red triangle: EUI <= 40)
- 6. Uncalibrated simulated results

EnergyPlus Graphical User Interface Import from BIM

Libraries

0

0

Summary Data

Avg. Area Per Floor:

Total Win/Wall Ratio:

Total Floor Area:

580,000 sq ft

22%

3.930,000 sq ft

Total Win/Wall Ratio - North:

Total Win/Wall Ratio - South:

Total Win/Wall Ratio - East:

Total Win/Wall Ratio - West

20%

22%

22%

1736

28

23

56

265 21

1736

29

23

267

21

0

Windows Slabs

Schedules

Air Systems

Controls

Zone Equipment

Water Systems

Glazing and Façade Decision Support Tools

Download http://windows.lbl.gov/software/ FY10 ~ 37,000 Downloads

Design /Simulation Tools

Berkeley National Laboratory

BERKELEY LAB

Glazing/Shading/Daylighting Measurement and Validation

- Integrated Systems testbeds
- Mobile Thermal Test Facility
- IR Thermography chamber
- Large integrating sphere
- Optics laboratory
- Scanning Goniophotometer
- HDR Imaging
- Field Data Collection systems
- Commissioning systems
- Virtual Building Controls Testbed
- Daylighting controls laboratory

User Test Bed Research Facilities

rrrrrr

Scope: Construct eight new test beds to measure integrated building systems performance.

Concept Design for Reconfigurable Test Module

Building Controls Virtual Test Bed (BCVTB)

Open-source middle-ware for

- co-simulation
- real-time simulation (hardware in the loop, software in the loop)

eLAD: eLearning Platform for Lighting and Daylighting

Example: Conference Room Lighting Controls Virtual Testbed

Sample results based on daylight conditions and alternate controls use

Web-based Façade Design Tool

w/ Univ of Minnesota: http://www.commercialwindows.org

Windows for High Performance Commercial Buildings

Home | Facade Design Tool | Overview | Case Studies | Tools & Resources | Contact Information

Facade Design Tool: Compare Performance Options in Boston, Massachusetts

College of Design · University of Minnesota All rights reserved.

This site was developed jointly by the University of Minnesota and Lawrence Berkeley National Laboratory.

COMFEN: Estimating Energy and Daylighting Impacts in Early Design

