Radiance Workshop Introduction A Brief Overview of Building Science at LBNL

Stephen Selkowitz

Building Technologies Department

Lawrence Berkeley National Laboratory SESelkowitz@LBL.GOV

U.S. Building End Use Energy Consumption

Building sector has: Largest Energy Use! Fastest growth rate!

Buildings consume 40% of total U.S. energy

- 71% of electricity
- •54% of natural gas

No Single End Use Dominates

BERKELEY LAB

rrrrri

LAWRENCE BERKELEY NATIONAL LABORATORY

LBNL: Basic sciences—advanced materials, computing, UC Berkeley- Architecture, Engineering, Business,....

UC System- multi-campus collaborations....

4000 Staff; **11 Nobel Prize Winners** \$700M/yr Budget

Energy Efficient Buildings: Established 1975, ~200+ staff

Materials, Technologies **Building Systems Facades Lighting, Daylighting** HVAC **Electrical loads Indoor Environmental Quality Hi Tech Buildings Data Centers, Labs Field Performance Distributed Energy Systems Demand Response Electric Grid Reliability** Simulation tools **Benchmarking and Rating Energy standards Energy policy w/ Renewables International Studies**

Environmental Energy Technologies Division EETD Vision

Vision: To be a global innovation hub for science, technology, and policy solutions to the world's most critical energy and environment challenges

Mission: Perform analysis, research and development leading to better energy technologies and reduction of adverse energy-related environmental impacts

EET Division Profile

- One of the largest research divisions at LBNL
- About 12% of Lab in size of budget; 10% in staffing
- Total staff and visiting researchers
 in 2009: 390; in 2010: 469; in 2011: ~600

- Total funding 2010: \$130M includes \$28M ARRA; 96 research sponsors
- Multidisciplinary research staff includes 94 principal investigators: architects, mechanical engineers, physicists, chemists, chemical engineers, economists, policy analysts
- Draws on students and recent graduates from UC and other academic institutions for research assistants and postdoctoral appointments
- Some joint appointments at UC Berkeley and UC Davis campuses
 Lawrence Berkeley National Laboratory

Energy Markets, Policy and Analysis

Analyze and design effective energy and environmental approaches

Major Program Areas:

- Appliance Energy Standards
- Demand Response Research
- Energy markets and policy
 - -Electricity markets
 - Consortium for Electric Reliability Technology Solutions (CERTS)
 - -Renewable energy markets
 - -Industrial energy
 - -Water and energy
- Next generation analysis tools
 - -Web-based tools for consumers
 - Non-technology factors in markets
 - -Databases, statistical analysis, agent-based models

Capacity 2170.00 1381.00 592.00 Voltate 626.00 567.00

Major New Initiatives:

- CC2.0 LDRD strategic proposal
- Utilize exascale computing to build integrated models of energy technologies, markets and climate impacts
- Life cycle assessments for energy and health

International/Developing Countries

Berkeley Lab projects bringing solutions to the developing world

Major Program Areas:

- China Group's work on energy efficiency, industrial best practices, buildings energy standards, technical assistance
- International Energy Group informs and helps formulate and implement in-country energy and environmental policies
- The Berkeley-Darfur stove, and other stoves projects

Major New Initiatives:

- Energy efficient stoves for Haiti earthquake survivors
- Mongolia air quality and appliance standards
- China/US Energy Center Buildings
- Projects in India on electricity market regulation and energy efficiency policy
- Projects in Ethiopia, Kazakhstan, Singapore, ASEAN
- Super-efficient Appliance Development global project
- CLASP global project

Saving Carbon vs. Energy Sectors Production, Distribution, Use

Source: McKinsey Global Institute, 2007

Replotted: John Zysman, UCB

Energy Efficiency Pays for Itself

Prior Impacts of Efficiency R&D From National Academy of Sciences Report (2001)

Estimate of Economic Benefits

Lifetime Savings (Net) for Technologies*

NAS estimate of economic benefits of EE R&D assigns \$23 of \$30 billion in savings to building technologies.

ROI => 1000/1 for successful investments;

Overall Portfolio shows net g small number of big winners Additional \$48 billion in savings from energy efficiency standards for 9 residential products

Economic Impacts of Energy

U.S. Building Construction: ~ \$1T/yr

Building Energy Consumption: ~\$425B/yr

(The total cost of all higher education was \$289B/yr in 2002: Wikipedia)

US. Department of Energy Buildings R&D Budget: ~ \$100M/yr over the last decade -> 4000:1

"Gentlemen, we have run out of money.

It is time to start thinking."

Sir Ernest Rutherford, Nobel Laureate (Physics)

History and Future Needs Good News/Bad News

growth but to meet to meet the various 2030- 2050 Energy and Carbon goals we need dramatic reductions, never before

achieved

1973

2005 2020 2030

2050

BERKELEY LAB

Caution: Energy vs GHG goals

Lawrence Berkeley National Laboratory

California Success to Date: Per Capita Electricity Sales

"BIG BOLD" ENERGY EFFICIENCY STRATEGIES

In order to guide market transformation in a number of key sectors, this Plan embraces four specific programmatic goals, known as the "Big Bold Energy Efficiency Strategies," established by the CPUC in D.07-10-032 and D.07-12-051. These goals were selected not only for their potential impact, but also for their easy comprehension and their ability to galvanize market players.

- All new residential construction in California will be zero net energy by 2020;
- 2. All new commercial construction in California will be zero net energy by 2030;
- Heating, Ventilation and Air Conditioning (HVAC) will be transformed to ensure that its energy performance is optimal for California's climate; and
- All eligible low-income customers will be given the opportunity to participate in the low income energy efficiency program by 2020.

California:

All new residential construction will be zero net energy by 2025

All new commercial construction will be zero net energy by 2030

Lawren

September 200

www,CaliforniaEnergyEfficiency,com

Scale and Impact: Approaches to Achieve Sector-wide Efficiency Goals?

Buildings "Grand Challenge"

- Focus on Life Cycle of the Building
 - Design → Construction → Operations → Renovation → Decommissioning
- Focus on Measurable, Documented Energy Impacts
 - Make performance visible, understandable, actionable
- Focus on Integrated Smart Building Systems
 - Materials → Devices → Integrated Systems → Buildings
- Focus on Buildings and the Grid
 - Renewables, Storage, Microgrids, Neighborhoods, "Smart Grid"
- Focus on People and Behavior
 - Policy makers, Designers, Investors, Contractors, Occupants,...
 - Occupant behavior, life style, satisfaction, comfort,....
- Focus on "Intersection" of Technology and Policy
 - Incremental + Innovative, Disruptive technologies
 - Investment and Decision making

Building Innovation "Game Changers"

MATERIALS AND SYSTEMS

- Smart Glass/Dynamic solar control
- High R Windows, Insulation
- Thermal Storage- Envelope, structural
- 200 lumen/watt lighting
- Daylight integration
- Dimmable, Addressable Lighting Controls
- Task Conditioning HVAC
- Climate Integrated HVAC
- HVAC vs comfort and IEQ
- Miscellaneous Electrical Loads
- Demand Response
- Controls infrastructure- sensors, networks
- Building- and Grid- Smart electronics
- Electrical Storage

LIFE-CYCLE OPERATIONS

- Building Life Cycle Perspective
- Benchmarks and Metrics
- Building Information Models (BIM)
- Integrated Design Process and Tools
- Building Operating Controls/Platform
- Building Performance Dashboards
- Understanding Occupants/Behavior
- Facility Operations

System of Systems

Integrated Whole Building Approach

Building Design Platform:
Tool for Architects to Design New Buildings
With Embedded Energy Analysis

Building Operating Platform
Sensors, Communication, Controls,
Real-Time Optimization for Cost, Energy Use, CO₂ Footprint

Information-Technology based Building Life-Cycle Integration View

Commercial Buildings Research

Advanced Facades and Daylighting

Program Goals:

Net Zero Energy Balance for New and Retrofit

Enhanced View and Thermal Comfort

Reliable, cost effective operations

Tools to design, optimize, specify, control

Adoption/diffusion throughout industry

Advanced

Technologies:

Sensors;

Controls;

Hi R windows,

Cool coatings;

Switchable coatings;

Automated Shading;

Daylight-redirecting

Operable windows,

Human Factors:

Thermal comfort
Visual comfort
Satisfaction
Performance

Manufacturing

Installation

Commissioning Reliability

Cost

Decision Tools
Books, Guides
Websites
Simulation Tools
Testbeds

Application:

All climates

All Building types

New-Replacement-Retrofit

Program Activities:

Simulation

Optimization

Lab test

Field Test

Demonstrations

Standards

Partners

Manufacturers

Owners

Architects

Engineers

Specifiers

Code officials

Contractors

Utilities

Benefits of High Performance Building Systems

Improve
Occupant Comfort,
Satisfaction and
Performance

Occupant

Add Value, Reduce Operating Costs

Reduce Energy, Greenhouse Gas Emissions

Planet