BSDF Compression Using Wavelets

Secret Weapons of RADIANCE: Stuff That Never Took Off

Roland Schregle

BSDF Compression Using Wavelets

- Purpose: Efficiently store and retrieve measured 4D BSDF data for integration into RADIANCE through (lossy) wavelet compression
- Intended for photometric validation of RADIANCE / photon map
- Prototype developed winter 2000 spring 2001
- Shelved summer 2001, abandoned & never published

BSDF

$$f(\vartheta_i, \varphi_i, \vartheta_r, \varphi_r) = \frac{L_r(\vartheta_r, \varphi_r)}{L_i(\vartheta_i, \varphi_i) \cos \vartheta_i \omega_i}$$

BSDF

RealLife™ BSDF: high angular resolution, large dataset

BSDF

⇒ Compression must preserve specular peaks!

Wavelet Theory

- Decompose signal into linear combinations of orthogonal 2D basis functions and coefficients
- Basis functions have finite support
 improved fidelity in peaks (compared to Fourier)
- Applications in:
 - Denoising, filtering (image & audio processing)
 - Trend analysis, statistics (stock exchange)
 - Computer Graphics (Wavelet Radiosity)
 - Compression (JPEG2000)

Wavelet Theory

Approximate signal f(x) with 2^n samples by

$$\sum_{i=0}^{2^n-1} a_i \phi_i(x) + b_i \psi_i(x)$$

with

- Scaling func ϕ_i () scaled by coeff a_i
- Wavelet func $\psi_i(x)$ scaled by coeff b_i
- ψ_i derived from linear combinations of ϕ_i
- ψ_i and ϕ_i decorrelate f(x)

Multiresolution Analysis

Represent f(x) at varying detail levels $j \in \{0 ... n\}$ by adapting ϕ_i, ψ_i in frequency domain:

$$f_{j}(x) = \sum_{i=0}^{2^{j}-1} a_{j,i} \phi_{j,i}(x) + b_{j,i} \psi_{j,i}(x)$$

with

- j = n: $f_n(x) = f(x)$, original samples $s_0 \dots s_{2^n-1}$
- j=0: Lowest resolution, single coefficient pair
- $j \rightarrow j-1$: Number of samples/coeffs halved
- $\phi_{j,i}$, $\psi_{j,i}$ dilated for res. j & translated for interval i

Basis Functions: Haar Wavelets

Scaling function dilated for resolution *j* and interval *i*:

$$\phi_{j,i}(x) = 2^{j} (x - i2^{-j}) \phi_{[0,1[} = \begin{cases} 1 & \text{if } i2^{-j} \le x < (i+1)2^{-j} \\ 0 & \text{else} \end{cases}$$

 \Rightarrow Average of neighbouring samples/coeffs at res. j + 1

Basis Functions: Haar Wavelets

Wavelet function dilated for resolution *j* and interval *i*:

$$\psi_{j,i}\left(x\right) = 2^{j} \left(x - i2^{-j}\right) \psi_{[0,1[} = \begin{cases} 1 & \text{if } i2^{-j} \le x < \left(i + \frac{1}{2}\right) 2^{-j} \\ -1 & \text{if } \left(i + \frac{1}{2}\right) 2^{-j} \le x < \left(i + 1\right) 2^{-j} \\ 0 & \text{else} \end{cases}$$

 \Rightarrow Difference of neighbouring samples/coeffs at res. j + 1

Wavelet Compression

- Difference coeffs $b_{j,i} \approx 0$ where neighbouring samples at res. j+1 correlate
 - ⇒ remove these coeffs (minimising error) by either
 - Absolute thresholding: remove $b_{j,i}$ if $b_{j,i} \leq \tau$
 - Error bounding: remove $b_{j,0}\dots b_{j,k-1}$ if $\sum\limits_{i=0}^{k-1}b_{j,i}\leq \epsilon$ and $b_{j,i-1}\leq b_{j,i}< b_{j,i+1}$
- Removed coeffs implicitly set to 0 during inverse transform
- Bonus: compression induces denoising ;-)

Spherical Wavelets

- [Schröder & Sweldens, 1995]
- Adapts 2D basis functions to spherical topology
- Multiresolution analysis by recursive subdivision of spherical triangles
- Samples/coeffs live on triangle vertices
- 2D basis functions operate on triangle edges
- Represents 2D BSDF for fixed incident dir

Spherical Multiresolution Analysis

Triangular subdivision at resolution levels $0 \dots n$

Vertices at resolution level j define discrete set of m_j outgoing dirs Ω_j for fixed incident dir (ϑ_i, φ_i) with max. resolution coeffs $a_{n,k} = f_r(\vartheta_i, \varphi_i, \vartheta_{n,k}, \varphi_{n,k})$, $(\vartheta_{n,k}, \varphi_{n,k}) \in \Omega_n, \ k = 0 \dots m_j - 1$

Spherical Wavelet Transform

Spherical wavelet transform only decorrelates BSDF over outgoing dirs $(\vartheta_{j,k}, \varphi_{j,k}) \in \Omega_j$ for every fixed incident dir (ϑ_i, φ_i)

- \Rightarrow perform secondary wavelet transform decorrelating BSDF over incident dirs $(\vartheta_{j,k},\varphi_{j,k})\in\Omega_j$ for every fixed outgoing dir (ϑ_r,φ_r)
- \Rightarrow wavelet transform over Ω_j^2 (hyperspherical topology) by permuting in/out dirs (= m_j^2 coeffs)

Prototype Implementation

- Hideously complicated
- Uses mesh data struct to locate neighbouring triangles & shared vertices
- Measured in/out dirs associated with triangle vertices by resampling using nearest neighbour search with 4D keys $(\vartheta_i, \varphi_i, \vartheta_r, \varphi_r)$ (code borrowed from pmap)
- Handles anisotropic BSDFs, replicates isotropic BSDFs around φ

Results: Tracing Paper

Measured BSDF

Results: Tracing Paper

Wavelet compression, 90% coefficents removed

Results: Retroreflecting Blinds

Measured BTDF, ca. 3200 samples

Results: Retroreflecting Blinds

Wavelet compression, 88% coefficents removed

Loose Ends

- Optimised data structure (sparse arrays)?
- Integration into RADIANCE (BSDFWavelet material)?
- Point sampling (partial inverse transform)?
- PDF inversion for path tracing (photon map)?
- Benefit to RADIANCE community?
- Relevant to new BSDF material?

Lessons Learned

- Wavelets have great potential for BSDF applications
 successful proof of concept
- Ideal for specular BSDFs

BUT...

- Beyond original scope (photon map, validation)
- Left unpublished
- Similar concept published by Claustres, Paulin, Boucher [BSDF Measurement Modelling Using Wavelets For Efficient Path Tracing, 2003]