WINDOW6 and Complex Glazing Database update

Christian Kohler, Jacob Jonsson, Robin Mitchell, Charlie Curcija, Ling Zhu, Stephen Czarnecki, Simon Vidanovic

Windows and Daylighting Research Group August 24th 2011

Background

How are Tools Used?

- Design of new products
- Guidelines for Product
 Selection
- Energy Star Compliance
 and Analysis
- NFRC Ratings

New Product Design

Product Selection Guidelines

NFRC Label

Energy Star Map

WINDOW

 Construct window from glazing system, frame and divider libraries

Complex Shading Devices

Manufacturers, engineers, architects, builders want to know their performance characteristics

Fritted/Patterned Glass

Cloth Shades / Bug Screens

Venetial Blinds / Integral shades

Light Redirecting Products

Models in WINDOW6

- Venetian Blinds
- Woven Shades
- Fritted Glass

Generic BSDF

Venetian Blind				
Slat width: Spacing: Tilt: Tilt angle: Blind thickness:	16.0 12.0 45 degre 45 11.3	mm mm ees v		
Rise: Help	2.000	mm		

Example Work Flow for Venetian Blinds

Not Implemented Yet

_ **-** X

Radiance

Sun Position		
Oate/time	Month Jan 💌 Day 1 💌 Time 12:00 粪	
1	Latitude 38.0	
C Manual	Altitude 42.5 Azimuth 0.0	
Room geometry	SimpleRoom 💌	
Calculation detail	Low	
View	Fisheye 💌	Close
Sky specification	+s sunny sky, with sun 💌	
Comment		

×

Mkillum

||| BERKELEY LAB

Three-Phase Method

- 100 Mb of pre-calculated HDR images for 1 view
- 10 seconds to generate an image

Three-Phase Method

Mkillum

 ${}_{\mathsf{detail}}H \hspace{0.1 cm} {}_{\mathsf{quality}}M \hspace{0.1 cm} {}_{\mathsf{variability}}M$

Mkillum

with blinds detail H quality M variability M

BERKELEY LAB

COMPLEX GLAZING DATABASE (CGDB)

- Conceptually comparable to International Glazing Database (IGDB)
- Designed for optically complex materials and devices
 - Venetian Blind slats
 - Woven Shades
 - Scattering (Diffusing) Interlayers
 - Scattering glass
 - Fritted Glass
 - Cellular shades
 - Other scattering layers/systems

INITIAL CGDB CONTENT

- Existing Product Measurements:
 - 100 Woven Shade screens
 - 14 Frits
 - -7 Venetian Blinds
 - 3 Diffusing Laminates
- Measured at LBNL

CGDB – Technical

- Stored in Access-2007 format: .ACCDB
- All data submitted will be XML
- BSDF's will stay as native XML in database
- Other complex data (eg frit measurements) will be parsed.
- LBNL will provide XML version of CGDB

TIMELINE

- Sept 2011
 - CGDB Beta (W6 and W7beta)
 - WINDOW 7 / THERM7 Beta
- Jan 2012
 - CGDB Inter-laboratory comparison (ILC)
 - CGDB 1.0 Release
- September 2012

- WINDOW 7 / THERM 7 Release

Radiance – WINDOW6 links

- W6 can read genBSDF XML files as a layer definition
- W6 writes out BSDF XML files for a system that can be used with mkillum or 3phase method
- Embedded link to win32 radiance binaries for visualization.


```
<Layer>
                      <Material> com </Material>
                      <DataDefinition>
                                            <IncidentDataStructure>Columns</IncidentDataStructure>
                                            <AngleBasis> colored </AngleBasis>
                      </DataDefinition>
                      <WavelengthData>
                                            <LayerNumber>System</LayerNumber>
                                            <Wavelength unit="Integral">Visible</Wavelength>
                                            <SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum>
                                            <DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>
                                            <WavelengthDataBlock>
                                                                   <WavelengthDataDirection>Transmission Front</WavelengthDataDirection>
                                                                   <ColumnAngleBasis>LBNL/Klems Full</ColumnAngleBasis>
                                                                   <RowAngleBasis>LBNL/Klems Full</RowAngleBasis>
                                                                   <ScatteringDataType>BTDF</ScatteringDataType>
                                                                   <ScatteringData> colored </ScatteringData>
                                           </WavelengthDataBlock>
                      </WavelengthData>
                      <WavelengthData> @ </WavelengthData> Transmission Back
                      <WavelengthData> colored   Address Addre
                      <WavelengthData> colored   Add the second s
</Layer>
</0ptical>
</WindowElement>
```


<Layer>

<Material> (Material> <DataDefinition> (VataDefinition> <WavelengthData> (VavelengthData> <WavelengthData> (VavelengthData> <WavelengthData> (VavelengthData> <WavelengthData> (VavelengthData>

Visible

<WavelengthData>

<LayerNumber>System</LayerNumber> <Wavelength unit="Integral">NIR</Wavelength> <SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum> <DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum> <WavelengthDataBlock> <WavelengthDataDirection>Transmission Front</WavelengthDataDirection> <ColumnAngleBasis>LBNL/Klems Full</ColumnAngleBasis> <RowAngleBasis>LBNL/Klems Full</ColumnAngleBasis> <ScatteringDataType>BTDF</ScatteringDataType> <ScatteringData> </ScatteringData> </WavelengthData> <WavelengthData> </WavelengthData> <WavelengthData> </WavelengthData> <WavelengthData> </WavelengthData> <WavelengthData> </WavelengthData> <WavelengthData> </WavelengthData> <WavelengthData> </WavelengthData>

</Layer> </Optical> </WindowElement>

NIR

CURRENT AVAILABILITY

- WINDOW 6 / THERM 6 version 6.3 available now
 - Incorporated selected scattering materials and layers
 - LBNL can add selected new materials & layers
 - Soon releasing version which natively reads genBSDF output (without NIR data)

CURRENTLY UNDER DEVELOPMENT

- Vertical blinds analytical model
- Honeycomb/Cellular shades analytical model
- Perforated screens analytical model
- Application of University of Waterloo thermal models for indoor and outdoor venetian blinds

ANGULAR SHGC AND VT OUTPUT

Thank you

Contact info

Christian Kohler Windows and Daylighting Research Group Lawrence Berkeley National Laboratory CJKohler@lbl.gov Windows.lbl.gov 510-486-5040

