basics, measurement and modelling of BRTF

Dr. Peter Apian-Bennewitz info@pab.eu

pab advanced technologies Ltd Freiburg, Germany

September 22, 2010

Outline

- 1 basics
 - introduction
 - photometrics reloaded
- 2 BRTF math
 - BRTF definition
- 3 gonio-photometers
 - incidence light
 - sample mount
 - detector system
- 4 BRTF data and models
 - example data BRTF
 - asymmetric in/out angular resolution
- 5 getting BRTF into Radiance
 - paths
 - BRTF models
 - example: model fits in 1994
 - what Radiance is missing

name

- BRTF = bidirectional reflection transmission function
- BSDF = bidirectional scatter distribution function
- Bxxx = .. whatever..

all the same quantity:

name

- BRTF = bidirectional reflection transmission function
- BSDF = bidirectional scatter distribution function
- Bxxx = .. whatever..

all the same quantity: scattering of light at a surface

sequence to simulation results:

- sequence to simulation results:
 - 1 measure materials

- sequence to simulation results:
 - 1 measure materials
 - 2 model material

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - add geometry, sky, etc

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - add geometry, sky, etc
 - 4 use model in simulation

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - 3 add geometry, sky, etc
 - 4 use model in simulation
- why bother measuring at all?

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - 3 add geometry, sky, etc
 - 4 use model in simulation
- why bother measuring at all?
 - 1 measured data better then assumptions

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - 3 add geometry, sky, etc
 - 4 use model in simulation
- why bother measuring at all?
 - 1 measured data better then assumptions
 - 2 no generic BRTF per type of material BRTF depends on surface finish

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - 3 add geometry, sky, etc
 - 4 use model in simulation
- why bother measuring at all?
 - 1 measured data better then assumptions
 - 2 no generic BRTF per type of material BRTF depends on surface finish
 - 3 manufacturers specs not always available

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - 3 add geometry, sky, etc
 - 4 use model in simulation
- why bother measuring at all?
 - 1 measured data better then assumptions
 - 2 no generic BRTF per type of material BRTF depends on surface finish
 - 3 manufacturers specs not always available
 - 4 recheck manufacturers specs

- sequence to simulation results:
 - 1 measure materials
 - 2 model material
 - 3 add geometry, sky, etc
 - 4 use model in simulation
- why bother measuring at all?
 - 1 measured data better then assumptions
 - 2 no generic BRTF per type of material BRTF depends on surface finish
 - 3 manufacturers specs not always available
 - 4 recheck manufacturers specs
 - 5 compare materials by BRTF data

solid angle

- solid angle of an object as seen from point P: project object onto sphere with radius r around P $\Omega := \frac{A_p}{r^2}$
- unit: steradian [sr]
- dimensionless, full sphere: 4π , hemisphere: 2π
- infinitesimal: $d\Omega$, finite: Ω or $\Delta\Omega$
- solid angle of a cone with opening angle α :

$$\Omega_{cone}=2\pi\left(1-\cosrac{lpha}{2}
ight)$$

radiant power

basic unit: power transported by electromagnetic radiation

as described within concept of *photometry* (sometimes known as *radiance flux*)

radiant power

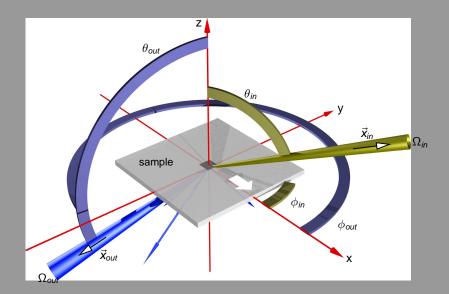
basic unit:

power transported by electromagnetic radiation

as described within concept of *photometry* (sometimes known as *radiance flux*)

three spectral flavours:

- spectrally integrated: radiometric [Watt]
- spectrally resolved: power per wavelength interval [Watt/nm]
- weighted by eye response and integrated: photometric [Lumen]


derived quantities

quantities used most often:

- \blacksquare radiant power per area: \mathcal{E} [Watt/m2]
- radiant power per solid angle [Watt/sr] (Radiant Intensity)
- radiant power per solid angle and projected area, $\mathcal{L}(\vec{x})$, [Watt/(sr*m²)] (*Radiance*)

... and equivalent photometric units

coordinate system

coordinate system

advantages of using these sample coordinates:

- standard polar coordinates
- one BRTF for front and back side of sample
- z-axis: surface normalx-axis: marked on sample
- \Box direction written as \vec{x} or (θ, ϕ)

With incident light on the *front* surface: $\theta_{in} = (0^{\circ}...90^{\circ})$:

 $\theta_{out} = (0^o...90^o) \text{ reflection,}$ $\theta_{out} = (90^o...180^o) \text{ transmission.}$

Other coordinates possible, use transformations.

demo

it's all easy ...

$$\begin{split} \text{Definition} \\ \mathcal{L}_{out}(\vec{x}_{out}) &= \int\limits_{\vec{x}_{in}}^{\Omega_{in} = 2\pi} \textit{BRTF}(\vec{x}_{out}, \vec{x}_{in}) \; \mathcal{L}_{in}(\vec{x}_{in}) \; \cos(\alpha_{in}) \; \textit{d}\Omega_{in} \end{split}$$

$$\begin{split} & \text{Definition} \\ & \mathcal{L}_{out}(\vec{x}_{out}) = \int\limits_{\vec{x}_{in}}^{\Omega_{in} = 2\pi} \textit{BRTF}(\vec{x}_{out}, \vec{x}_{in}) \; \mathcal{L}_{in}(\vec{x}_{in}) \; \cos(\alpha_{in}) \; d\Omega_{in} \end{split}$$

 \mathcal{L}_{in} : incident radiance from \vec{x}_{in}

$$\begin{split} \text{Definition} \\ \mathcal{L}_{out}(\vec{x}_{out}) &= \int\limits_{\vec{x}_{in}}^{\Omega_{in} = 2\pi} \textit{BRTF}(\vec{x}_{out}, \vec{x}_{in}) \; \mathcal{L}_{in}(\vec{x}_{in}) \; \cos(\alpha_{in}) \; \textit{d}\Omega_{in} \end{split}$$

- \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- $d\Omega_{in}$: solid angle of incident light

$\begin{array}{l} \text{Definition} \\ \mathcal{L}_{out}(\vec{x}_{out}) = \int\limits_{\vec{x}_{in}}^{\Omega_{in}=2\pi} \textit{BRTF}(\vec{x}_{out},\vec{x}_{in}) \; \mathcal{L}_{in}(\vec{x}_{in}) \; \cos(\alpha_{in}) \; d\Omega_{in} \end{array}$

- \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- $d\Omega_{in}$: solid angle of incident light
- \square cos(α_{in}): historic nuisance (*Lambert* scatterer)

Definition $\mathcal{L}_{out}(\vec{x}_{out}) = \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} BRTF(\vec{x}_{out}, \vec{x}_{in}) \mathcal{L}_{in}(\vec{x}_{in}) \cos(\alpha_{in}) d\Omega_{in}$

- \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- $d\Omega_{in}$: solid angle of incident light
- $\square \int_{\vec{X}_{in}}^{\Omega_{in}=2\pi} : \text{integral over hemis-sphere}$

Definition $\mathcal{L}_{out}(\vec{\mathbf{x}}_{out}) = \int_{\vec{\mathbf{x}}_{in}}^{\Omega_{in}=2\pi} \textit{BRTF}(\vec{\mathbf{x}}_{out}, \vec{\mathbf{x}}_{in}) \ \mathcal{L}_{in}(\vec{\mathbf{x}}_{in}) \ \cos(\alpha_{in}) \ d\Omega_{in}$

- \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- \Box $d\Omega_{in}$: solid angle of incident light
- $\square \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} : \text{integral over hemis-sphere}$
- \Box \mathcal{L}_{out} : outgoing radiance to \vec{x}_{out}

Definition

$$\mathcal{L}_{ ext{out}}(ec{\mathbf{x}}_{ ext{out}}) = \int\limits_{ec{\mathbf{x}}_{ ext{in}}}^{\Omega_{ ext{in}} = 2\pi} ext{BRTF}(ec{\mathbf{x}}_{ ext{out}}, ec{\mathbf{x}}_{ ext{in}}) \; \mathcal{L}_{ ext{in}}(ec{\mathbf{x}}_{ ext{in}}) \; \cos(lpha_{ ext{in}}) \; d\Omega_{ ext{in}}$$

- \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- $d\Omega_{in}$: solid angle of incident light
- $\square \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} : \text{integral over hemis-sphere}$
- \Box \mathcal{L}_{out} : outgoing radiance to \vec{x}_{out}
- \square BRTF > 0 and may be > 1

Definition

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int\limits_{\vec{x}_{in}}^{\Omega_{in}=2\pi} \textit{BRTF}(\vec{x}_{out}, \vec{x}_{in}) \; \mathcal{L}_{in}(\vec{x}_{in}) \; \cos(\alpha_{in}) \; d\Omega_{in}$$

- \square \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- \Box $d\Omega_{in}$: solid angle of incident light
- $\square \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} : \text{integral over hemis-sphere}$
- \Box \mathcal{L}_{out} : outgoing radiance to \vec{x}_{out}
- \square BRTF > 0 and may be > 1
- \square BRTF_{void} $(\vec{x}_{out}, \vec{x}_{in}) = \delta(\vec{x}_{out} \vec{x}_{in})/\cos(\alpha_{in})$, Dirac Delta function

Definition

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int\limits_{\vec{x}_{in}}^{\Omega_{in}=2\pi} \textit{BRTF}(\vec{x}_{out}, \vec{x}_{in}) \; \mathcal{L}_{in}(\vec{x}_{in}) \; \cos(\alpha_{in}) \; d\Omega_{in}$$

- \mathcal{L}_{in} : incident radiance from \vec{x}_{in}
- \Box $d\Omega_{in}$: solid angle of incident light
- $\square \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} : \text{integral over hemis-sphere}$
- \Box \mathcal{L}_{out} : outgoing radiance to \vec{x}_{out}
- \square BRTF > 0 and may be > 1
- \square BRTF_{void} $(\vec{x}_{out}, \vec{x}_{in}) = \delta(\vec{x}_{out} \vec{x}_{in})/\cos(\alpha_{in})$, Dirac Delta function
- \square BRTFc($\vec{x}_{out}, \vec{x}_{in}$) := BRTF($\vec{x}_{out}, \vec{x}_{in}$)cos(α_{in})

approximate formula

$$\mathcal{L}_{out}(\vec{\mathbf{x}}_{out}) = \int_{\vec{\mathbf{x}}_{in}}^{\Omega_{in}=2\pi} \frac{\mathsf{BRTF}(\vec{\mathbf{x}}_{out}, \vec{\mathbf{x}}_{in}) \, \mathcal{L}_{in}(\vec{\mathbf{x}}_{in}) \, \cos(\alpha_{in}) \, d\Omega_{in}}{\mathsf{D}_{in}}$$
(1)

- oxdot assume $\mathcal{L}_{in} > 0$ for small Ω_{in} around \vec{x}_{in}^* only
- \square and assume *BRTF* = *const* over Ω_{in}

approximate formula

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} BRTF(\vec{x}_{out}, \vec{x}_{in}) \mathcal{L}_{in}(\vec{x}_{in}) \cos(\alpha_{in}) d\Omega_{in}$$
 (1)

- \equiv assume $\mathcal{L}_{\mathit{in}}$ > 0 for small Ω_{in} around $ec{\mathsf{x}}_{\mathit{in}}^*$ only
- \square and assume *BRTF* = *const* over Ω_{in}
- then, and only then

$$BRTF(\vec{x}_{out}, \vec{x}_{in}^*) \approx \frac{\mathcal{L}_{out}(\vec{x}_{out})}{\mathcal{E}_{in}}$$
 (2)

But:

This approximation is misleading and should be used with caution.

averaged BRTF

measured BRTF is always averaged over solid angles of detector $\Delta\Omega_{out}$ and lamp $\Delta\Omega_{in}$:

$$\overline{\textit{BRTF}}(\Delta\Omega_{in}, \Delta\Omega_{out}) := \frac{1}{\Delta\Omega_{in}} \int\limits_{\Delta\Omega_{out}}^{\Delta\Omega_{out}} \int\limits_{\vec{x}_{out}}^{\Delta\Omega_{in}} \textit{BRTF}(\vec{x}_{out}, \vec{x}_{in}) \ d\Omega_{in} \ d\Omega_{out} \tag{3}$$

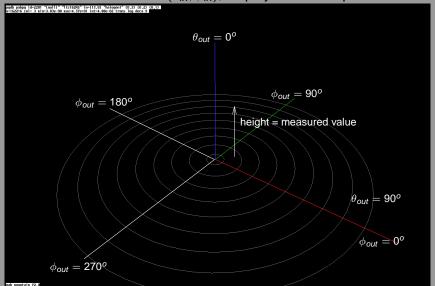
consequences:

this limit measurement of BRTF features.

$$\rightsquigarrow$$
 minimise $\Delta\Omega_{out}$ and $\Delta\Omega_{in}$

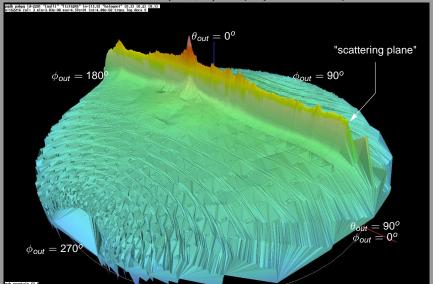
transmission values from BRTF

transmission τ from Ω_{in} into Ω_{out} is given by:

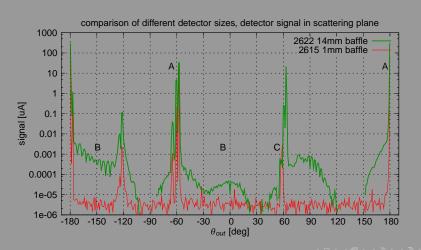

$$\tau(\Omega_{in},\Omega_{out}) = \frac{\int\limits_{\vec{x}_{out}}^{\Omega_{out}} \left\{ \int\limits_{\vec{x}_{in}}^{\Omega_{in}} \textit{BRTF}(\vec{x}_{out},\vec{x}_{in}) \mathcal{L}_{in}(\vec{x}_{in}) \cos(\alpha_{in}) d\Omega_{in} \right\} \cos(\alpha_{out}) d\Omega_{out}}{\int\limits_{\vec{x}_{in}}^{\Omega_{in}} \mathcal{L}_{in}(\vec{x}_{in}) \cos(\alpha_{in}) d\Omega_{in}} \tag{4}$$

Which for the *direct-hemispherical transmission* results in:

$$\tau_{dh}(\vec{x}_{in}) := \tau(d\Omega_{in}, 2\pi) = \int_{\vec{x}_{out}}^{2\pi} BRTF(\vec{x}_{out}, \vec{x}_{in}) \cos(\alpha_{out}) d\Omega_{out}$$
 (5)


visualising BRTF 3D

for one incident direction (θ_{in}, ϕ_{in}) , display one hemisphere:


visualising BRTF 3D

for one incident direction (θ_{in}, ϕ_{in}) , display one hemisphere:

visualising BRTF 2D

2D cuts along scattering plane through 3D dataset I prefer Cartesian plots over polar plots. example:

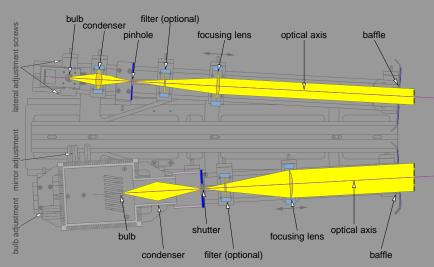
medium sized intermission

... questions to math part ?

next to come: gonio-photometers

light source types & parameters

beam parameter	Halogen	Xenon	laser diode	gas laser
power	+	++	-	
radiance	-	+	++	+++
noise	++	+	+	+
polychromatic	+	+	-	-
incoherent	+	+	-	-

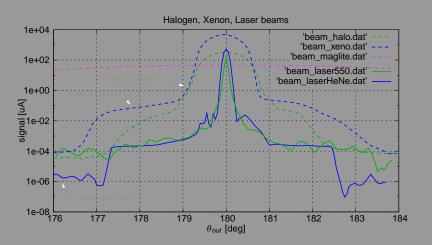

choice depends on:

- sample type
- wavelength range
- detector type

in the following: lamps kept at fixed positions alternative concepts: moving lamp, fixed sample

example: pgll lamp subsystem

Halogen subsystem



Xenon subsystem

example: pgll lamp subsystem

example: beam profiles

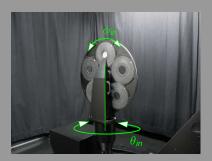
sample mount

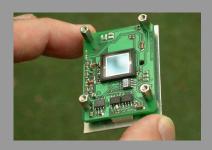
- fixes sample (securely)
- \square adjusts for θ_{in}, ϕ_{in}
- two degrees of freedom manual adjustment or automatic
- minimal self-shadowing
- shading of stray light

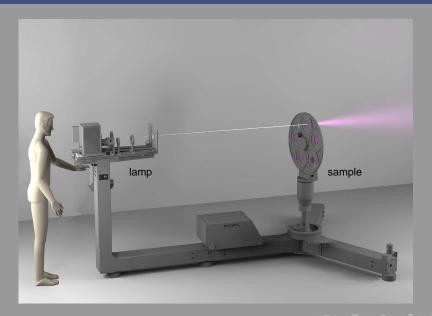
in the following: vertical sample mount assumed

example sample mounts

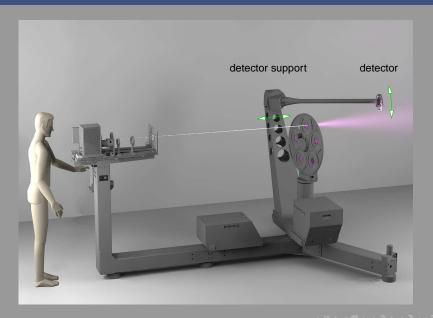
example sample mounts



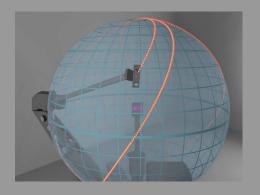

example sample mounts



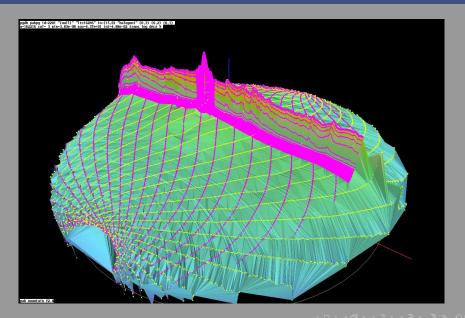
detector parameters

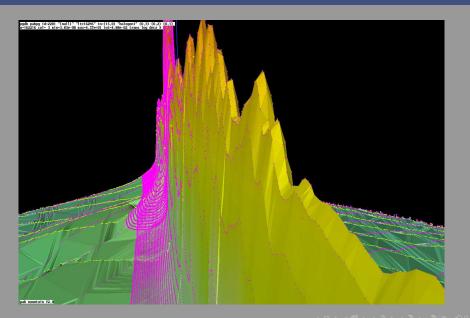


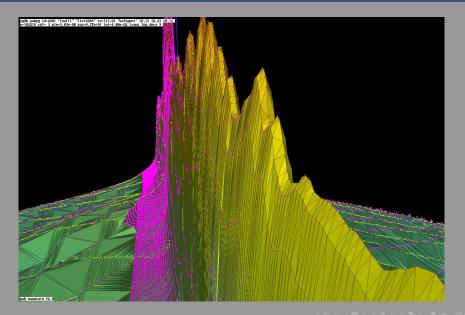
- material and wavelength: Si (VIS), InGaAs (IR), etc
- principle: photo-diode, etc
- sample rate: measurements / second: 1Hz to 1kHz
- noise: noise equivalent BRTF, lowest measurable BRTF
- dynamic range: 10² at least, 10⁸ better


detector mechanics

detector mechanics

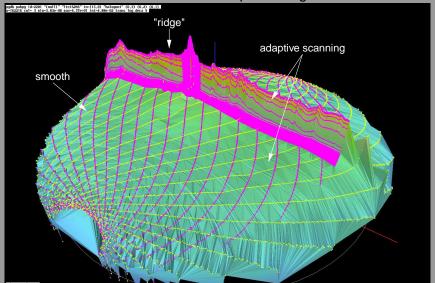


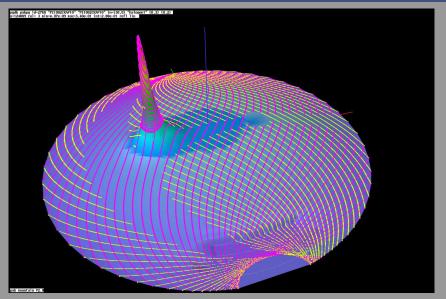

scanning gonio-photometer



measurements-on-the-fly:

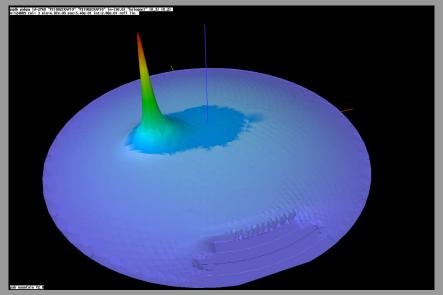
- avoid start-stop-cycles
- need excellent sync between position and data-acquisition
- need fast detector



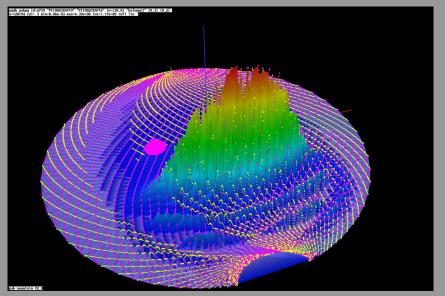

- in 3D, $f(x_i, y_i)$ data points do *not* define a unique surface
- Delaunay triangulation recommended
- triangulation used for interpolation and integration
- $_ \leadsto$ good triangulation vital for BRTF data processing

adaptive high angular resolution

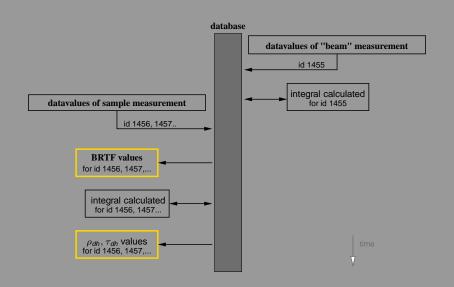
BRTF consists of smooth areas and peaks/ridges:



checking for measurement errors implicitly


128109 data points all nicely smooth

checking for measurement errors implicitly


good.

checking for measurement errors implicitly

ceiling lights on, 100Hz noise, (see SPIE 2010 paper for more)

getting BRTF from raw data

getting BRTF from raw data

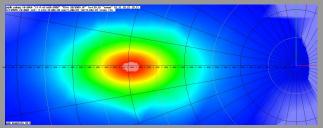
advantages of using unscattered beam as reference

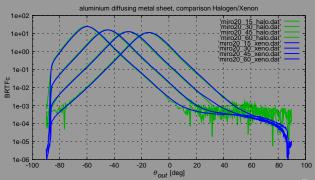
- illuminated area and detector distance cancel out
- no reference samples needed
- sensor identical for reference measurement

imaging versus scanning gonio-photometers

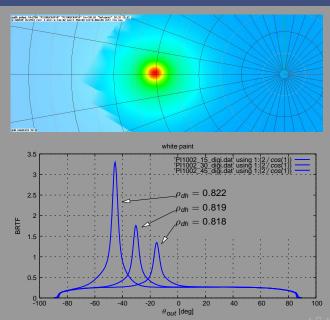
alternative way of doing measurements:

imaging gonio-photometers

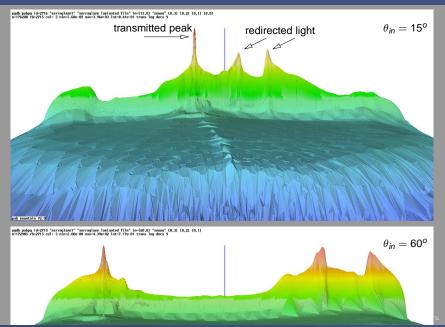

- + faster
- more intermediate optics, not as general


very short intermission

... questions to machine&measurement part?


next to come: BRTF data &models

example: aluminium

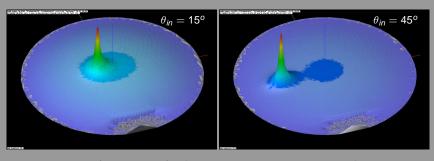


example: white paint

example: light redirecting, Serraglaze

angular resolution of incident and outgoing side

both sides are *not* symmetric:


- outgoing side:
 adaptive, high resolution (0.1°)
- incident side:low resolution (10°)

since:

Theorem

in most cases the topology of a BRTF does not change between \vec{x}_{in} and $\vec{x}_{in} + \Delta$, for small Δ (e.g. 20°)

topology of a BRTF

- \square structure ("topology") of BRTF remains the same for \triangle
- shape parameters change: peak position, peak height, peak width, background level
- \longrightarrow intermediate θ_{in} are predictable.
- ightharpoonup measurements of finely resolved $\theta_{\it in}$ are redundant
- don't waste time and data with these think of a good interpolation method

problems to solve while importing data:

interpolation between outgoing directions \vec{x}_{out} : triangulation, etc

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

ways into simulation program

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

ways into simulation program

loading BRTF data-files directly

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

ways into simulation program

- loading BRTF data-files directly
- fitting of parameters of internal model (trans, plastic)

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

ways into simulation program

- loading BRTF data-files directly
- ☐ fitting of parameters of internal model (trans, plastic)
- fitting of parameters of external model (cal files)

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

ways into simulation program

- loading BRTF data-files directly
- ☐ fitting of parameters of internal model (trans, plastic)
- fitting of parameters of external model (cal files)
- loading of compressed/processed data

39 / 50

problems:

adaptive scans produce non-grid data

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- → direct import is de-facto not supported

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- no interpolation between incoming directions

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- no interpolation between incoming directions

alternative way: interpolate data to regular grid

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- no interpolation between incoming directions

alternative way: interpolate data to regular grid

coarse grid misses peaks

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- no interpolation between incoming directions

alternative way: interpolate data to regular grid

- coarse grid misses peaks
- fine grid increases memory requirements

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- no interpolation between incoming directions

alternative way: interpolate data to regular grid

- coarse grid misses peaks
- fine grid increases memory requirements

process:

 \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in}, ϕ_{in})

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in}, ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in},ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- → model complete for outgoing and incident directions

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in},ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- □ best situation: a_i simple function of (θ_{in}, ϕ_{in})

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in}, ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- □ best situation: a_i simple function of (θ_{in}, ϕ_{in})

drawbacks:

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in}, ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- □ best situation: a_i simple function of (θ_{in}, ϕ_{in})

drawbacks:

 \blacksquare requires that f and choice of $a_1...a_N$ describe scattering well

process:

- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in}, ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- □ best situation: a_i simple function of (θ_{in}, ϕ_{in})

drawbacks:

- \blacksquare requires that f and choice of $a_1...a_N$ describe scattering well
- requires thinking for each material. not automatic.

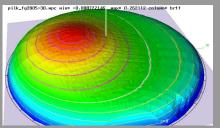
process:

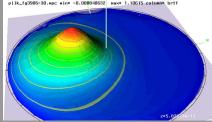
- \Box fit $f_{a_1...a_N}(\theta_{out},\phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in},ϕ_{in})
- \square use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- □ best situation: a_i simple function of (θ_{in}, ϕ_{in})

drawbacks:

- \square requires that f and choice of $a_1...a_N$ describe scattering well
- requires thinking for each material. not automatic.
- standard Levenberg-Marquardt method not 100% robust

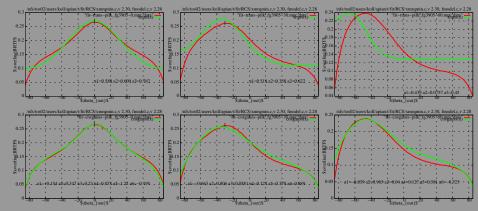
choice of model function

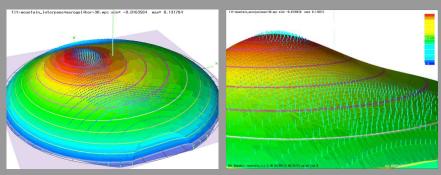

internal to Radiance (e.g. trans)


$$BRTF_{trans} = \frac{a_6 (1 - a_7)}{\pi} + \frac{a_6 a_7}{\pi a_5^2 \sqrt{\cos(\theta_{in})\cos(\theta_{out})}} \exp[(2\cos(\theta_{half}) - 2)/a_5^2]$$
 (6)

external (example)

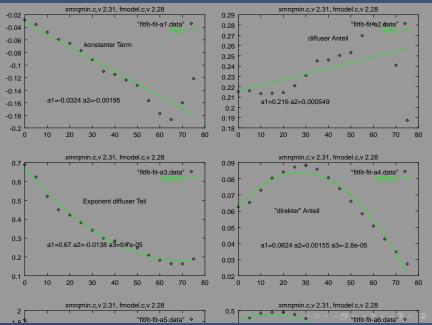
BRTF_{cosgauss} :=
$$a_1 + a_2(\cos \theta)^{a_3} + a_4 \exp(-\beta^2 a_5)$$
 (7)
 β := $\arccos[\cos(\theta)\cos(\alpha_{in} + a_6) - \sin(\theta)\cos(\phi_{out})\sin(\alpha_{in} + 10a_6)]$
 θ := $\pi - \theta_{out}$


example: fits to Pilkington fg3905, fg3906 in 1994


polymer/glass sandwich glazing, forward scattering, "milky" glazing

fg3905 model comparison, in scattering-plane

note: see chapter 6 in author's 1995 dissertation for details


fg3905 model comparison, off scattering-plane

deviation between model and data shown as spikes

fitting is done for all outgoing directions (not just in-plane) model may deviate outside the scattering plane

example: Aerogel model, parameter variation

conclusions for Radiance models

current models don't match measured data well

conclusions for Radiance models

- current models don't match measured data well
- better built-in models or cal-files seem worth considering

what Radiance is missing

cal file support for photon-map (and ambient calcs)→ support for general BRTF models

all these features require changes to the rendering core

→ non trivial work. But would be very useful in practice.

what Radiance is missing

- cal file support for photon-map (and ambient calcs)

 → support for general BRTF models
- BRTF import using non-fixed-grid data

all these features require changes to the rendering core

→ non trivial work. But would be *very* useful in practice.

what Radiance is missing

- cal file support for photon-map (and ambient calcs)

 → support for general BRTF models
- BRTF import using non-fixed-grid data
- way to add internal models in a modular way

all these features require changes to the rendering core

→ non trivial work. But would be very useful in practice.

links

latest papers on pgll gonio-photometer & links:

- "Experimental validation of bidirectional reflection and transmission distribution measurements of specular and scattering materials,"
 SPIE 2010, Brüssel, http://dx.doi.org/10.1117/12.860889
- "New scanning gonio-photometer for extended BRTF measurements" SPIE 2010, San Diego, http://dx.doi.org/10.1117/12.854011
- currently installed pgll gonio-photometers:
 SERIS Singapore, LBNL Berkeley, pab Freiburg, industrial client Europe
- pgll gonio-photometer webpage: http://www.pab.eu
- author's 1995 Phd: http://www.pab-opto.de/pers/phd/

Id: brtf - talk.tex, v1.362010/09/2207: 58: 25apianExpapian

...thanks

last slide.

- physics is fun
- happy rendering
- thank you for joining workshop and thanks for your attention