
page 1

Reflector profile optimisation Reflector profile optimisation 
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The idea

Reflector profile optimisation using Radiance
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Calculation of luminaires using Radiance

Different examples: diffuse reflector and globe, specular reflector, semi-specular reflector.

Results compared with: the analytical solutions, laboratory measurements.

Example of specular, paraboloid reflector – compared with the analytical solution
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Luminous intensity 
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Optimisation of luminaires vs calculation 

Luminaire optical design

- determining the optimal luminous 
intensity distribution or optimal 
luminance distribution.

Constraints can include:

- the size of luminaire, 

- the properties of material used, 

- the overall cost of the solution proposed, 

- the minimum efficiency that can be 
accepted, etc. 

Optimisation of a luminaire: the goal 
is to meet a given luminous intensity 
distribution by adjusting:

- the geometry of the reflector,

- optical properties of the reflector material,

- position, power and geometry of lamps, 
material used are set,

Variables describe the geometry of the 
reflector
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Optimisation of luminaires

MATLAB – optimisation tool

- determining the optimum reflector shape 
to produce the luminous intensity 
distribution required,

- generation and evaluation of a 
succession of designs,

- each variation is derived from the 
previous by adjusting the design 
variables,

- variables are determining reflector 
shape,

- script creates Radiance geometry, 

- an algorithm decides how and which 
variable needs adjusting and iterates the 
process until an optimal solution is 
found,

- stopping criteria are implemented.

RADIANCE – calculation tool

- calculation of illuminance at the distance 
„r” from the light centre of the reflector 
(rtrace -I),

- calculation of luminous intensity using 
inverse square law,

- polygon - surface for reflector and light 
source,

- mirror - material for reflector, 

- light - material for light source,

- light source is small sphere consists of 
triangles,
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Implementation of the computational optimisation workflow
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Pp, Pk – fixed points, determine 
the maximum reflector 
dimensions.

P1, P2, P3 – points that have 
fixed X coordinates while Z 
coordinates can be adjusted 
within a range. Surface of 
revolution will be concave. 

Variables are recorded together 
as a single vector with three 
dimensions:
Xi = [P1  P2  P3]

The vector Xi is used by the 
optimisation algorithm to adjust 
the reflector shape.

The reflector profile is interpolated using a piecewise cubic Hermite polynomial
strategy and it is constrained to points Pp, P1, P2, P3, Pk.

Modelling the reflector geometry

Rotationally symmetrical surface. Reflector shape profile revolving around Z axis.

Light 
source
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Spline piecewise interpolation method is class C2 (second derivative is continuous). 
A function generated with this approach has smooth shape but  doesn’t preserve monotonicity.

Pchip monotone interpolation can be accomplished using cubic Hermite splines with the slopes 
modified. In this case the function is class C1 (only first derivative is continuous). 
A discontinuous second derivative implies discontinuous curvature, but this method guarantees 
shape preservation and local monotonicity.

The monotone interpolation method available is the Fritsch–Carlson which allows calculating 
slopes and to preserve shape (it is used in the MATLAB function pchip).

Hermite polynomial interpolation

MATLAB spline and pchip function.

function

first derivative

second derivative
Figure from 
C. Moler: Numerical 
Computing with MATLAB
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spline – piecewise cubic interpolation 

pchip – monotone Fritsch-Carlson 
piecewise Hermite polynomial 
interpolation

Comparison of the results of the reflector geometry interpolation using the spline and pchip
function. 

In the middle area of the curve between points P1 and P3 the spline function is not monotonic.

Hermite polynomial interpolation
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Implementation of the computational optimisation workflow

Animation
R_I_PARmax05-debug-15.mov

4 frames per second

1 frame = 1 iteration

reflector profile

luminous intensity distribution 
calculated for above reflector 

profile (using Radiance)
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Pattern search - direct search method for solving optimization problem that doesn’t require 
any information about the gradient of the objective function. The algorithm search a set of 
points, called mesh, around the current point Xi (the current reflector configuration). To 
avoid being trapped in local minima the strategy that selects random starting points X0 is 
used.

Simulated annealing is a method for solving unconstrained and bound-constrained 
optimization problems. The method models the physical process of heating a material and 
then slowly lowering the temperature to decrease defects. 

Genetic algorithm is a method for solving both constrained and unconstrained optimization 
problems that is based on natural selection. The algorithm selects individuals at random from 
the current population to be parents and uses them to produce the children for the next 
generation. The main difference from other algorithms is that the genetic algorithm 
generates a population of points at each iteration instead of generating single point. 

Computational optimisation strategies (algorithms)

MATLAB optimisation algorithms (find minimum):
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Variables:  Z coordinate of points P1, P2 and P3
Constrains: (-0.9375 x + 0.04) < P1,P2,P3 < 0.04
Objective function F(X):  maximum luminous intensity at γ=00
(at the axis)
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As the analytical solution to the problem is 
known, it is possible to compare the different 
approaches. 

In fact, the maximum luminous intensity, which 
can be only obtained with a parabolic reflector, 
can be calculated using the following equation:

Case study A – optimisation of luminous intensity for a given direction

where: γ - polar angle, Φ - luminous flux (1000 lm),
D -diameter of the reflector (0.3 m), 
Lg – luminance of light source (1065294 cd/m2),
ρ - reflectance of reflector’s surface (0.9)
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10 starting points have been used, of which 4 got nearly the same best solution.

Calculated reflector profile is almost identical to parabolic curve, therefore it can be 
said that algorithm have found optimum solution.

Case study A – Pattern search

Luminous intensity distribution in the reflector’s axis. 
Final results for each of the 10 series.

Reflector profile and parabolic 
curve
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1.0 %68 539 cd67 850 cd
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The effect of the 
re-annealing
technique is clear: 
the temperature 
raises after a 
certain number of 
new points have 
been accepted, and 
starts the search 
again at the higher 
temperature. This 
technique avoids 
local minima. 

Case study A – Simulated annealing

Changes in luminous intensity in the reflector’s axis in consecutive 
iterations. 
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0.7 %68 359 cd67 850 cd

Optimization algorithmTheoretical best solution 
Difference

Luminous intensity in the reflector’s axis Iγ=0

The plot shows a vertical line at 
each generation. This line 
represents the range of the 
objective function values within  a 
generation. Reducing the amount of 
mutation decrease the diversity of 
subsequent generations. Diversity is 
important  to the genetic algorithm 
because it enables the algorithm to 
search a larger region of the space 
(no of population is 20).

Case study A – Genetic algorithm

The objective value changing in subsequent generations. 
The lower objective value, the higher luminous intensity 

in the reflector’s axis. 
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Simulated annealing and genetic algorithm methods return slightly different results 
each time when are run. This is because they both use random number generators. 

Patternsearch also returns random solution as the starting points X0 are defined 
randomly.

-174 / 1024 
= 17%

2 510 / 4044 
=  62%

562 / 2585 
= 22%

Success percentage: no of 
solution within 95% of the 
theoretical best

-1 040 / 2 425 [s]
= 0.43
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= 0.33

2 585 / 7 610 [s]
= 0.34
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-1 0404 0442 585No of iteration

0.031211
0.004844
-0.039102

0.030926
0.004735
-0.039275

0.031228
0.004764
-0.038838

0.030768
0.004435
-0.039320

Best solution    P1
(Z coordinates) P2

P3

67 85068 359
0.7 %

68 539
1.0 %

69 557
2.5 %

Luminous intensity Iγ=0 [cd]
Difference

Analytical 
solution

Genetic 
algorithm

Simulated 
annealingPattern search

Case study A – summary
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level of the penalty function fk.

If tolerance tol is set 
at 0.05, this means 
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the ratio R within 
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This example has not analytical solution which can be easily evaluated

Case study B – optimization of luminous intensity meeting a set distribution

Variables:  Z coordinate of points P1, P2 and P3
Constrains: (-0.9375 x + 0.04) < P1,P2,P3 < 0.04
Objective function F(X) with penalty:  

1. maximum luminous intensity at γ=00 (at the axis),
2. half-peak divergence value is δ=50 , the ratio R=0.5
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Case study B – Pattern search

Figure shows luminous intensity in the reflector’s axis (Ig0) and ratio R as a final result for 
each of the 10 series.

Luminous intensity must be as much as possible, ratio R should be within the range 0.45÷0.55

Only one series (no. 4) is close to the optimum. 
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Figure shows a selected portion of the simulated annealing optimization (one re-annealing step). 

Even if there are higher values of luminous intensity, they are not accepted because of the 
constrain at 5° (ratio R = 0.45÷0.55). The final solution is reached when the objective function
is minimized.
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Case study B – Simulated annealing
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High differences in 
objective function are a 
result of the penalty 
which increase the 
objective function 
value when ratio R is 
outside the range 
0.45÷0.55.

Case study B – Genetic algorithm

The objective value changing in subsequent generations. 
The lower objective value, the higher luminous intensity 

in the reflector’s axis. 
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The shorter calculations were performed by genetic algorithm and this method has 
also the best ratio of success percentage. 

174 / 1 040
= 17 %

316 / 3 082
= 10 %

40 / 1 740
= 2 %

Success percentage: no of 
solution within 95% of the 
theoretical best

1040 / 3 030 [s]
= 0.34

3082 / 9 930 [s]
= 0.31

1740 / 5 390 [s]
= 0.32

Iterations / time elapsed [s] 
(Intel Core Duo T2450 2.0 
GHz)
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Case study B – summary
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Figure presents the luminous intensity curve of a reflectors which profiles were 
calculated using genetic algorithm method for: 

(a) simply objective function (case study A),
(b) and objective with penalty (case study B).

Case study A and B – summary

(a)                                                             (b)
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Computational design optimisation can successfully be used to optimise simple 
reflector geometry to meet luminous intensity criteria. 

The methodology used is general and can be easily applied to more complex 
scenarios. 

In regards to the case studies shown, of the method used, simulated annealing
and genetic algorithm seem to be the most promising techniques. They both show 
a good ratio of iterations per second and a high percentage of solution within the 5% 
best. 

Pattern search shows a more cleaner convergence but it is often confused by local 
maxima/ minima.

Conclusions


