

SPOT on!

Accurate Prediction of Electric Lighting Reduction due to Daylighting using rsensor

Zack Rogers, Integrated Design Associates, Inc.

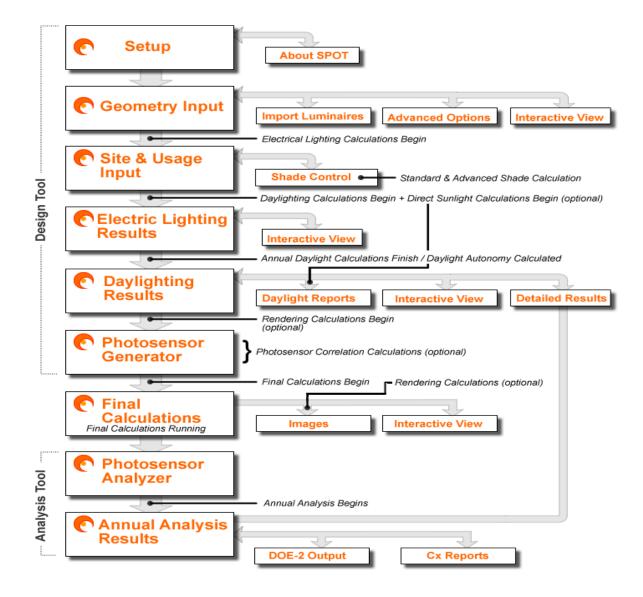
SPOT v4.0

Developed by Architectural Energy Corporation

Produced with support from CEC, NEEA, PG&E, SCE and CIEE

Radiance v3.9

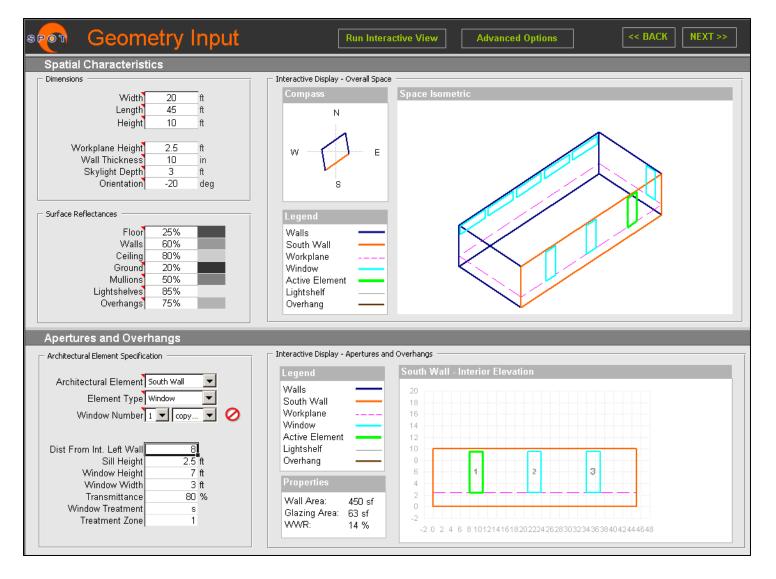
MinGW Radiance Installer by Francesco Anselmo


Daylighting Design Pieces

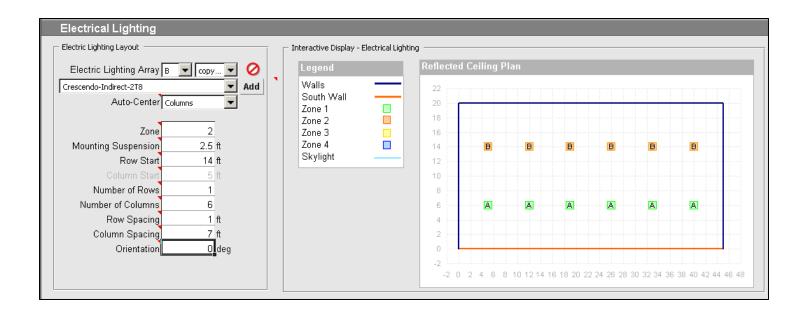
- Daylighting and electric lighting design
- Control system design (assume photosensor)
 - NLPIP Photosensor Report
 - Rsensor
- Account for daylighting in whole building energy use (model)
- Commission photosensor system

Daylighting Design Pieces

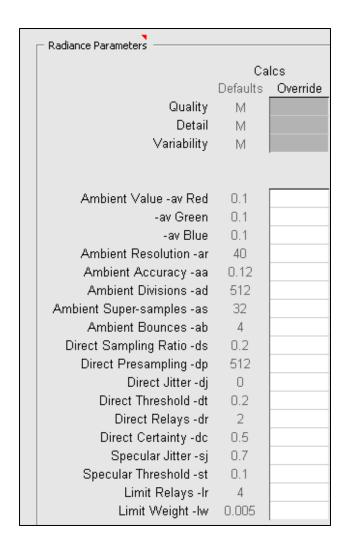
Daylighting Design

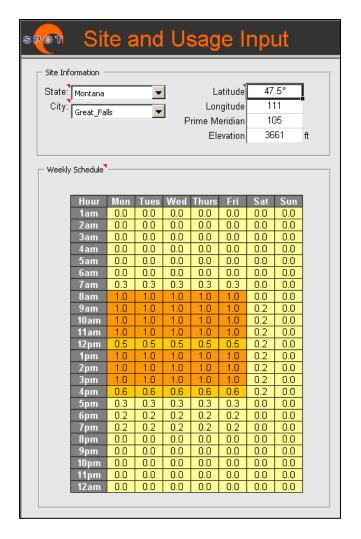

- What is good design?
- Tools
 - Animations
 - Physical models
 - Annual simulation

Annual simulation versus key design conditions

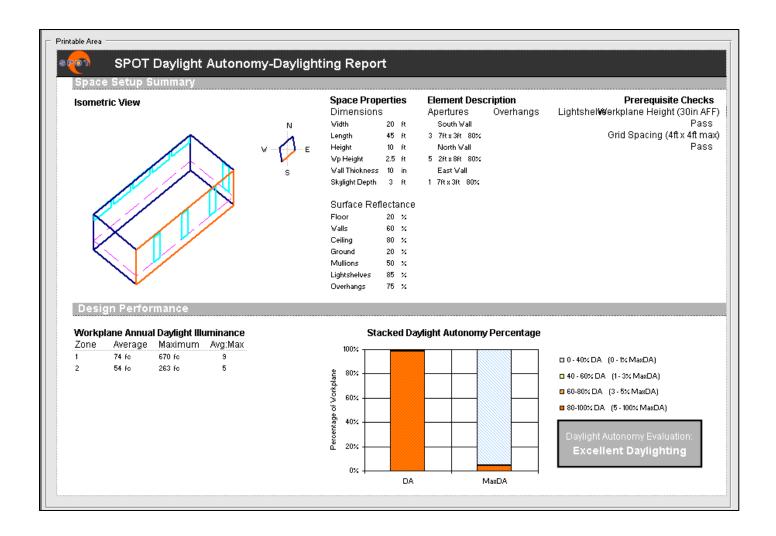


Daylighting Design




Electric Lighting Design

Annual Simulation Parameters

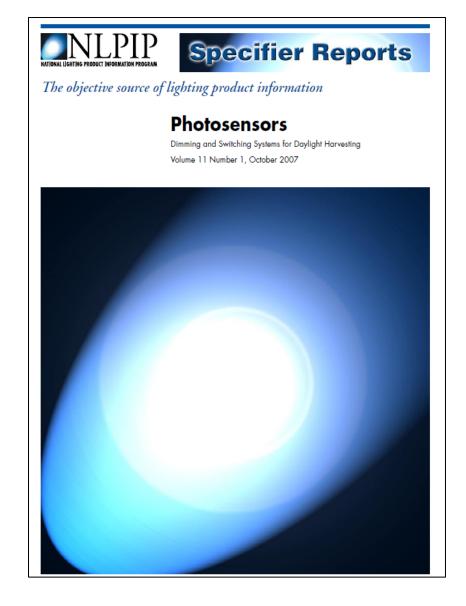

Illuminance Results

Nighttime Workplane Illuminance, [fc]																					
	Average	Max	Min	Max/Min	LPD		18	21	25	29	30	31	32	31	32	31	32	31	30	27	2.
Zone 1	32.0	40.9	19.4	2.1	0.75	₤	15		30	34	36	37	37	37	37	38	37	36	36	32	2
Zone 2	33.6	41.2	21.3	1.9	0.75		12	27	33	37	39	40	41	41	41	40	40	39	38	36	3
						Wídth,	9	26	33	36	38	39	40	41	40	41	40	39	37	35	3
							6	24	29	32	34	35	36	36	35	36	36	34	33	31	2
Total	32.8	41.2	19.4	2.1	0.75		3	19	24	26	27	29	30	29	28	30	30	28	26	25	2
								3	6	9	12	15	18	21	24	27	30	33	36	39	4
Light Loss Factor 0.8 Length, [ft]																					

Annual Daylight Workplane Illuminance, [fc]																								
			Zone 1			Zone 2				[< 3	3%	33%	-66%	66%-	100%	> 10	00%]					
Design Con	ndition	Avg	Max	Min	Avg	Max	Min	Shades?	Workplane /	Area	0,	%	28	6%	45	%	29	3%						
Clear Sky																								
○ Winter	9:00 AM	17	33	8	12	17	8	Z1Z2		18	14	15	15	15	15	16	16	19	46	35	18	19	20	20
0	12:00 PM	58	193	17	38	115	19	Z1Z2		15	17	28	19	20	21	35	21	21	20	37	67	24	27	23
	4:00 PM	27	58	10	16	51	10	Z2	Width, [ft]	12	15	17	20	20	18	21	47	22	21	21	23	72	24	24
Equinox	8:00 AM	32	78	12	24	72	14	Z1Z2		9	17	19	20	19	25	20	22	44	28	23	23	29	40	46
0	12:00 PM	75	342	23	44	49	32	Z1Z2		6	58	19	25	26	27	22	24	30	26	66	27	31	35	44
	4:00 PM	23	34	13	31	38	20	Z1Z2		3	12	19	41	36	19	21	57	46	26	20	78	56	41	43
Summer	8:00 AM	40	157	20	38	45	28	Z1Z2			3	6	9	12	15	18	21	24	27	30	33	36	39	42
	12:00 PM	64	374	21	58	71	39	Z1Z2									Length	n, [ft]						
	4:00 PM	34	43	18	60	74	35	Z1Z2																

Metric Comparison

Tools and Current Methods


- Rules of thumb (Mistrick, Rubenstein)
 - Sensor location and spatial sensitivity to avoid view of glazing
- EnergyPlus and DOE-2
 - Split flux methods
 - Assume photosensor signal is proportional to workplane illuminance
- SPOT and other tools
 - Radiance
 - Accurately represent photosensor signal

NLPIP Report

Sponsored by CEC et al.

 Rennselaer Polytechnic Institute's Lighting Research Center performed photosensor testing

Spatial, spectral and control response

NLPIP Report

Company

Axis Technologies, Inc.

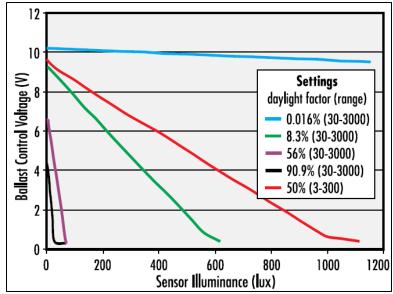
Douglas Lighting Controls, Inc.

Easylite Lighting Systems

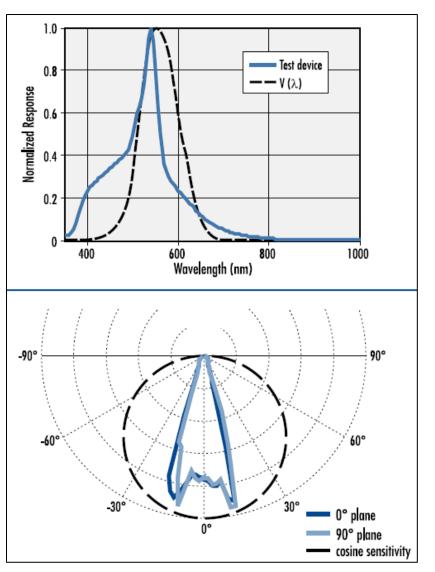
Leviton Manufacturing Co.

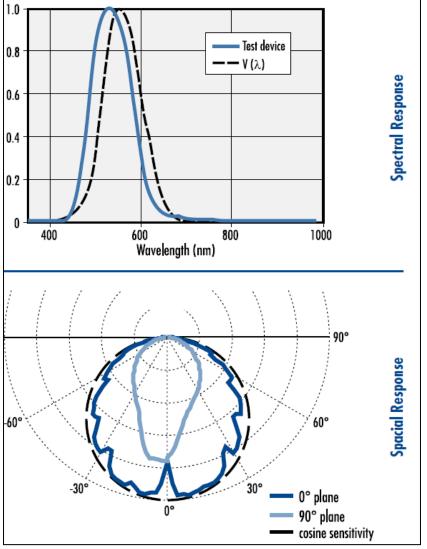
Lithonia Lighting - Acuity Brands

Lutron Electronics Co., Inc.


Novitas

PLC-Multipoint, Inc.


Sensor Switch, Inc.


Watt Stopper/LeGrand

NLPIP Report

Lighting Design

Control Design

Energy Model

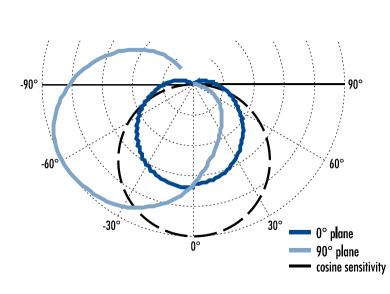
Commissioning

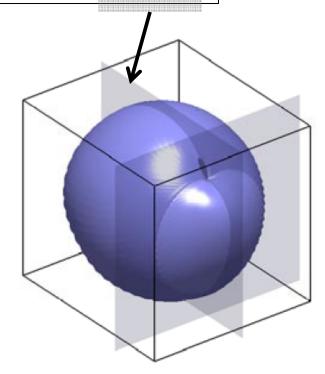
rsensor

 Developed by Greg Ward for SPOT v4.0 and compiled using MinGW by Francesco Anselmo

- Differs from psens (written by Ehrlich, et al.)
 - psens uses pic
 - psens applies square projected pixel shape
 - rsensor acts like rtrace
 - rsensor allows calculation of multiple sensors
 - rsensor cross-platform

rsensor Input


• -rd, -dn, -h, -n and other render options


- View origin (-vp), orientation (-vd) and rotation (-vu), where rotation gives zero azimuthal direction
- Sensor file (one per view)
 - Evenly spaced data
 - Rows give polar angle, columns give azimuth angle

rsensor Input

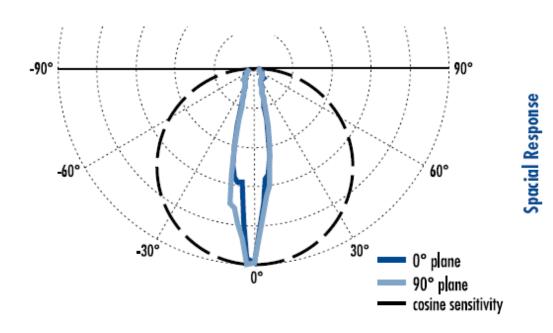
degrees	0	90	180	270
0	0.66	0.66	0.68	0.67
44	0.48	0.28	0.52	0.98
90	0.16	0.02	0.19	0.81

Lighting Design

Control Design

Energy Model

Commissioning

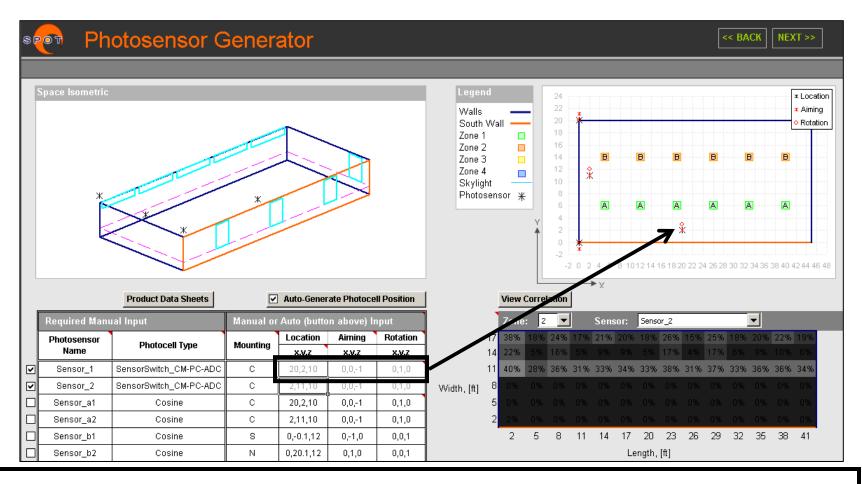

rsensor Output

 RGB values for use with human visual system or sensor spectral weights

Example output with standard photometric RGB

weights:

- Cosine
 - 35
 - fc
- Product
 - 3
 - relative signal

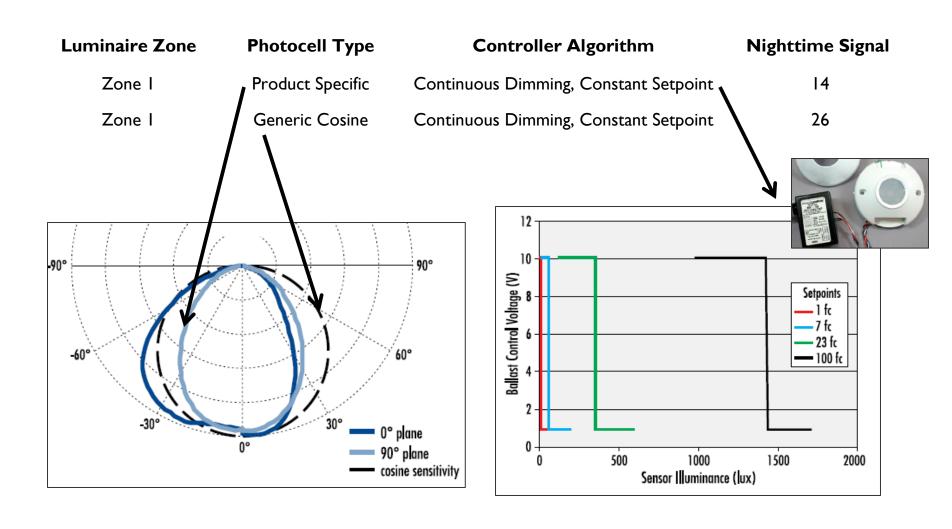

Lighting Design

Control Design

Energy Model

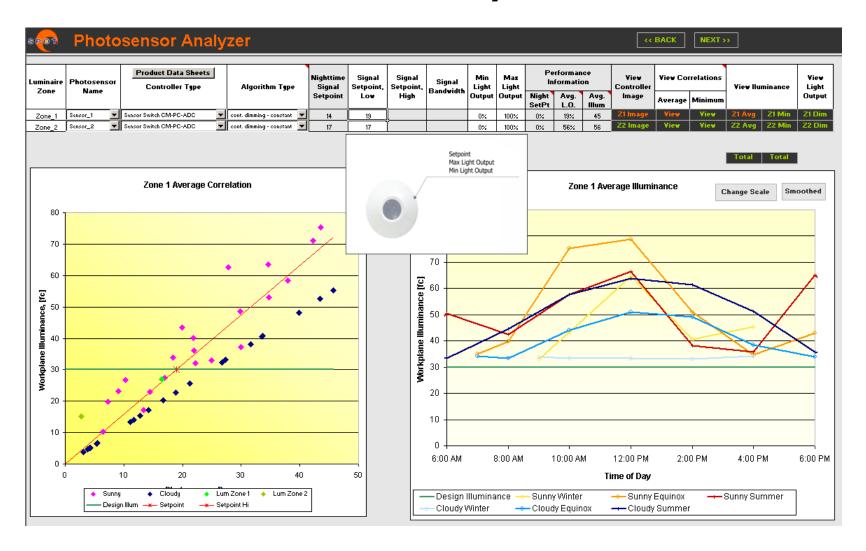
Commissioning

Photocell Correlation

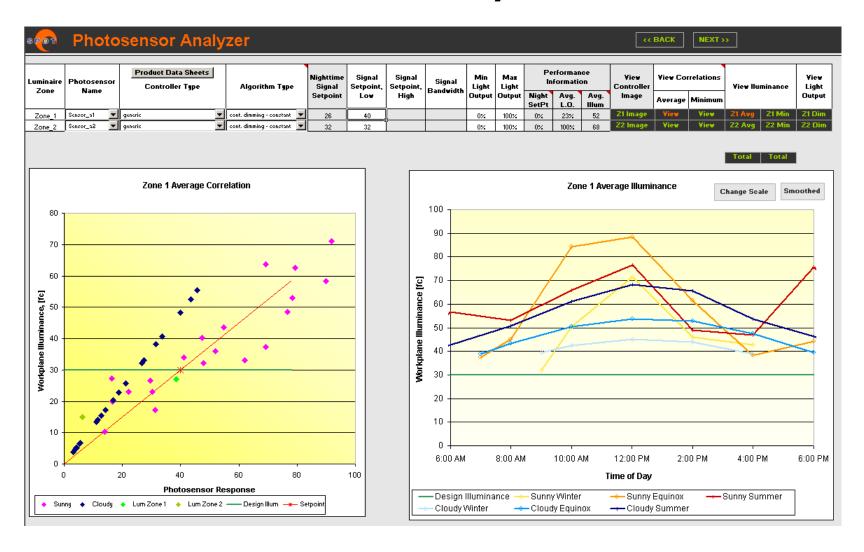


-vp 20 2 10

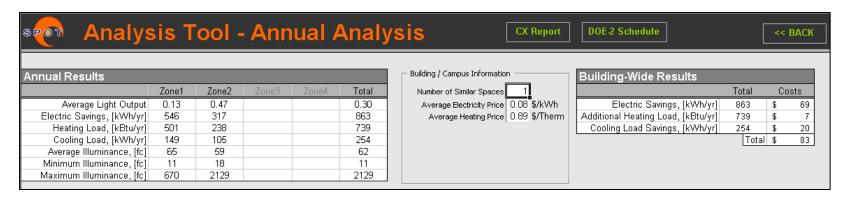
-vd 0 0 -l

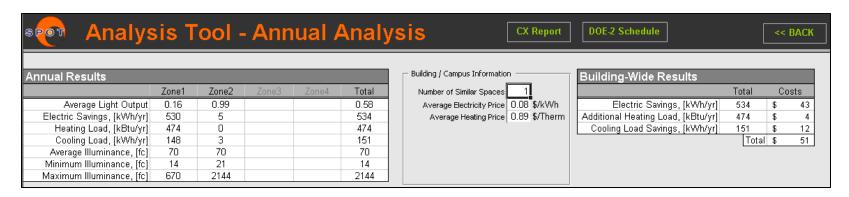

-vu 0 I 0

Photosensor Comparison



Photosensor Analyzer - Product


Photosensor Analyzer - Generic



Annual Results

• Product – 30% output

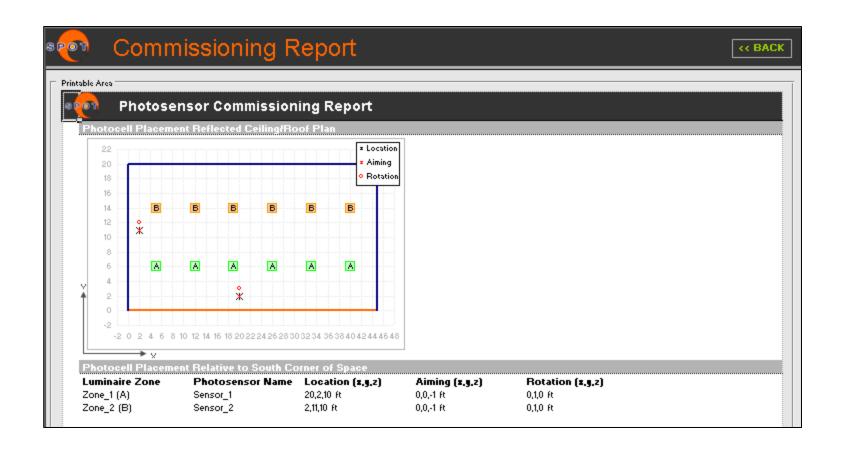
• Generic – 58% output

Energy Model Integration

Hourly LPD multiplier schedule

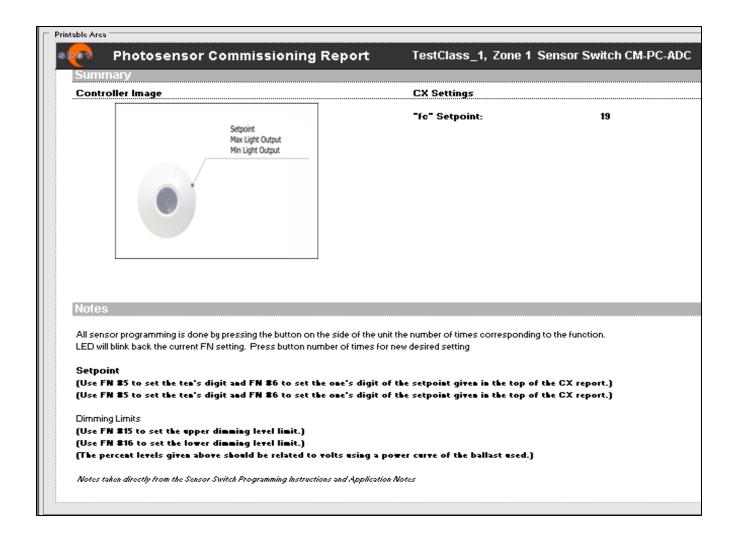
Account for power curve of dimming ballasts

- Must match other schedules in energy and SPOT models
 - Weather file
 - Occupancy schedule
 - SHGC due to active daylighting device


Annual Lighting Schedule

LPD Fraction in DOE-2 Format

```
spot 2 = SCHEDULE
TYPE = FRACTION
THRU JAN 7
(MON) (1,24) (0.00 0.00 0.00 0.00 0.00 0.18 0.46 0.36 0.44 0.38
0.18 0.18 0.04 0.00 0.02 0.18 0.12 0.12 0.00 0.00 0.00 0.00 0.00 )
(TUE) (1,24) (0.00 0.00 0.00 0.00 0.00 0.18 0.45 0.19 0.43 0.38
0.18 0.12 0.07 0.02 0.14 0.18 0.12 0.12 0.00 0.00 0.00 0.00 0.00 )
(WED) (1,24) (0.00 0.00 0.00 0.00 0.00 0.18 0.39 0.15 0.41 0.37
0.08 0.00 0.00 0.00 0.15 0.18 0.12 0.12 0.00 0.00 0.00 0.00 0.00 )
(THU) (1,24) (0.00 0.00 0.00 0.00 0.00 0.18 0.38 0.17 0.30 0.24
0.10 0.02 0.00 0.00 0.00 0.18 0.12 0.12 0.00 0.00 0.00 0.00 0.00 )
(FRI) (1,24) (0.00 0.00 0.00 0.00 0.00 0.18 0.39 0.07 0.17 0.00
0.07 0.01 0.00 0.00 0.03 0.18 0.12 0.12 0.00 0.00 0.00 0.00 0.00 )
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 )
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 )
(HOL) (1,24) (0.0)
```



Commissioning Report - Position

Commissioning Report - Settings

Future of Daylighting Controls...

Modeling

- Photosensor report standard (lan Ashdown IESNA LM-74-05 XML)
- Different design workflows
- Optimization software
 - PIDO (Stanford) and OptE-Plus (NREL)
 - Others?

System Design

- Sensors optimized using rsensor
- Smart sensors
- Closed vs open vs dual loop

Future SPOT Development

Integrate annual simulation of optical daylighting systems

- Validate annual sky approach and control algorithms?
- Include Energy + annual lighting reduction schedule format?
- Annual simulation for complex fenestration?
- Cross-platform?
- Plugin to Sketchup, revit, rhino?
- Importing of .rif files, dwg, obj, other?

References

- Download SPOT and other info at:
 - www.archenergy.com/SPOT
- SPOT support e-mail:
 - spotsupport@archenergy.com
- SPOT Users forum
 - http://community.archenergy.com/mailman/listinfo/spot

- NLPIP Photosensor Report
 - http://www.lrc.rpi.edu/nlpip/publicationDetails.asp?id=916&type=1

Questions?

Thoughts on SPOT, uses of rsensor or the future of daylighting controls?