ABPS
Animated Building Performance Simulation

Christoph Reinhart | Kera Lagios | Jeff Niemasz
Harvard Graduate School of Design
CONTEXT

SOFTWARE: NURBS based modeling
CONTEXT

TOOLBAR: For Rhinoceros 4.0 and Grasshopper 6.0

PLATFORM: Rhinoscripting (a language based on VBScript)
NECESSARY FILES: Skies, .epw, .map, material.rad, .rvb
CHALLENGE 1: Naming Convention

INTENT: Maintain function given “spaces”

PROCESS

The “tag” is part of your filename, up to the first [space]. The rest of the name is truncated.

Example 1: Tutorial Model.3dm >> Tutorial
Example 2: trial 1.3dm >> trial 1.3dm >> trial
Example 3: trial 2.3dm >> trial 2.3dm >> trial
PROCESS

CHALLENGE 2: Directory Convention

INTENT: Maintain freedom of user storage

User Folder

- OK: `C:\Radiance\GSD_Rhino\trial1`

- NOT OK: `C:\Documents and Settings\user\My Documents\trial 1`

Storage Folder

- Default

NOTE: Files are overwritten
CHALLENGE 3: Materials

INTENT: Allow user layer-conventions

1. Assigning materials by layer
2. Rhino’s material index
 a. Not standardized
 b. Inability to recall reliably
3. Use color instead
4. Material names are for user identification and export
1. Point ordering for geometry output
2. Material association
1 PROJECT INFO

FUNCTION: name, directory, location

FILES: xyzinfo.dat file, .wea file
2 NODES

FUNCTION: Create point grid

FILES: xyz.pts
3 MATERIALS

FUNCTION: Assign materials to Layers

FILE: material.rad (copied)
FUNCTION: Sets Radiance parameters

FILE: parameters.dat

Select a parameter to change and Exit to accept defaults or finish (ab ad as ar aa Exit): ab

Enter new -ab value <5>: |
5 METRICS

FILES: Test-dependent
5 METRICS

IMAGE FILE: xyzimg.bat, xyz.rif…
5 METRICS

DAYLIGHT FACTOR: Performs DF
FILES: xyz.bat, xyz.dat, xyz.rad, etc.

![Image of animated building performance simulation](image)

Daylight Factor Analysis:
- Mean Daylight Factor = 8.98
- 84.9% of Area > 2% Daylight Factor
5 METRICS

DAYLIGHT AUTONOMY: Performs DA
FILES: xyz.bat, xyz.rad, xyz.da, etc.

Animated Building Performance Simulation

Daylight Autonomy Analysis

Mean Daylight Autonomy = 75.8
DEMO USING RAD CONF.3DM
WHY?

1. Design Validation
2. Design Evaluation / Optimization
3. Rapid Iterations at all phases of design
1. Materials Management
2. Additional Metrics
3. Vertical Surfaces
4. Loading of saved results
5. Sky Options
REFERENCES

The scientific basis of the daylighting design sequence as described in this document is provided under:
http://isites.harvard.edu/fs/docs/icb.topic466783.files/Daylighting%20design%20sequence.v1.pdf

Free online references:

Daylighting Guide for Canadian Commercial Buildings:

Daylighting Schools:
http://www.innovativearchitecture.net/pdf/daylightguide_8511.pdf
The development of this document has been supported by the following organizations:

Harvard Graduate School of Design:
The GSD has been putting special attention to the advancement of environmental building performance, supporting a number of researches in the matter. www.gsd.harvard.edu

The Presidential Instructional Technology Fellows:
The Presidential Instructional Technology Fellows (PITFs) program was established to recruit and train fellows in conjunction with the Schools to work with faculty to develop digital course materials with immediate educational benefits. PITFs leverage existing software tools developed here at Harvard and provide outreach. www.provost.harvard.edu/funding