

Mehlika Inanici

University of Washington

inanici@u.washington.edu

Radiance Workshop, 2009

#### Image based Sky Models: Presentation Outline

1 Rationale: Accuracy of lighting simulations

2 Technique: High Dynamic Range Photography

**Image Based Lighting** 

3 Evaluation: Theoretical Evaluation

**Empirical Evaluation** 

4 Applications Daylighting Simulation

**Future directions** 

# Daylighting Simulation





#### Actual sky data



**Generic CIE models** 

#### Technique

1 High Dynamic Range Photography

2 Image Based Lighting



Aerial Photo: John Statmets







#### Post processing: Vignetting Correction





Digital Vignetting Filter





# Post processing: Luminance Calibration









# Post processing: Lighting Calibration using







# Post processing: Lighting Calibration using Illuminance meter





$$x = \sin \theta \cos \phi$$
$$y = \sin \theta \sin \phi$$
$$z = \cos \theta$$



$$E = \pi L$$

# Post processing: Calibration



Equidistant projection

Orthographic projection

# Post processing: Calibration





pinterp –vf input.hdr –vth –x 1024 –y 1024 –ff input.hdr hemi.hdr

# Post processing: Calibration



$$E = \pi L$$

pinterp –vf input.hdr –vth –x 1024 –y 1024 –ff input.hdr hemi.hdr

# Post processing: Orientation



## Post Processing

Adjust exposure to 1 in sky images

pfilt -1 -e ... sky1.hdr > sky1e.hdr

## Daylighting Simulation



Geometry: Sky dome is a hemisphere that is centered over the extends of the environment.

Distribution: Determined from a generic sky model

# Image based Sky Model









Light Emitting Hemisphere

# Image based Lighting



Mathematical model of sky dome versus image based model



Aerial Photo: John Statmets

# Computer Simulation



#### **Material Definitions**



R: 0.6677 G: 0.6161 B: 0.4585

 $Ref_{diff} = 0.265 * R + 0.670 * G + 0.065 * B$ 



#### Theoretical Validation



## Theoretical Validation



$$L = L_z \frac{1 + 2\sin(\alpha)}{3}$$

**PBR** 



**IBR** 





Visual and numerical match?

#### Radiance



# Physically based Rendering

**Direct Calculation** 



**Indirect Calculation** 



# Image based Lighting

Indirect Calculation (Stochastic)





**CIE Intermediate sky** 



Average difference: 1.6%

PBR

Lux

1200+



**CIE Clear sky** 

Average difference: 3%



Aerial Photo: John Statmets

# Location specific Empirical Evaluation



#### Evaluation with Real-world data

HDRI IBR





**Partly Cloudy Sky** 

# Site specific Empirical Evaluation



**HDRI** IBL







#### Surrounding urban fabric and forestry



## Surrounding urban fabric and forestry









#### **Direct HDR Capture of the Sun and Sky**

AFRIGRAPH 2004 Paper SIGGRAPH 2004 Poster

#### Jessi Stumpfel Andrew Jones Andreas Wenger Chris Tchou Tim Hawkins Paul Debevec

USC Centers for Creative Technologies











#### Conclusion

Image Based Sky models provide a more accurate and efficient way of defining:

- Sky luminance distributions
- Surrounding structures
- Surrounding forestry

#### Acknowledgements

"Development and Evaluation of Image based Sky Models for Daylighting Applications" is being funded by the University of Washington Royalty Research Fund (2009-2010).



Mehlika Inanici

University of Washington

inanici@u.washington.edu

Radiance Workshop, 2009