

Interactive is the New Black

David Smith Design IALD, IES, EIT
Lighting Designer, Buro Happold

First: A crash course in scripting for Radiance.

Choose a programming language that works on your system. *

It doesn’t matter which one, as long as it supports variables, loops, and
calling external commands.

Most modern programming languages have these capabilities.

First: A crash course in scripting for Radiance.

Choose a programming language that works on your system. *

It doesn’t matter which one, as long as it supports variables, loops, and
calling external commands.

Most modern programming languages have these capabilities.

* Or just choose Python. If you have to use Ecotect, choose Lua.
You don't have to use Ecotect.

Write down an assembly line process

gensky 4 1 12:00 -c -m 75 -o 73.96 -a 40.79 > sky.rad

oconv sky.rad model.rad > model.oct

rpict -vf view1.vf @rpict_options.txt model.oct > temp.hdr

ra_tiff temp.hdr view1.tiff

Figure out which parts you would ever consider changing.

gensky 4 1 12:00 -c -m 75 -o 73.96 -a 40.79 > sky.rad

oconv sky.rad model.rad > model.oct

rpict -vf view1.vf @rpict_options.txt model.oct > temp.hdr

ra_tiff temp.hdr view1.tif

Replace them with the variable names we will be using.

gensky M D HH:MM -c -m 75 -o 73.96 -a 40.79 > sky.rad

oconv sky.rad model.rad > model.oct

rpict -vf VIEWFILE @rpict_options.txt model.oct > temp.hdr

ra_tiff temp.hdr IMAGE

GenerateImage(M,D,HH,MM,VIEWFILE,IMAGE)

gensky M D HH:MM -c -m 75 -o 73.96 -a 40.79 > sky.rad

oconv sky.rad model.rad > model.oct

rpict -vf VIEWFILE @rpict_options.txt model.oct > temp.hdr

ra_tiff temp.hdr IMAGE

Add a way to call this block of code, making it a function.

Formatting convention: Indented lines of code “belong” to the first non-indented line above it.

GenerateImage(‘4’,’1’,’12’,’00’,’view1.vf’,’view1.tif’)

Replacing the variables with values when we call the function...

GenerateImage(‘4’,’1’,’12’,’00’,’view1.vf’,’view1.tif’)

…will replace the corresponding variables in the function. This set of
variables happens to have the same result as executing the original bit
of code.

gensky 4 1 12:00 -c -m 75 -o 73.96 -a 40.79 > sky.rad

oconv sky.rad model.rad > model.oct

rpict -vf view1.vf @rpict_options.txt model.oct > temp.hdr

ra_tiff temp.hdr view1.tif

It’s easy to think of the function as a machine. Put the right things into
the machine and the picture you want comes out the other end.

4 112

00

view1.vf

view1.tif

GenerateImageGenerateImage

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

X: 0

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

X: 0
Y: 0

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

X: 0
Y: 0
Output: 00

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

X: 0
Y: 1
Output: 01

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

X: 0
Y: 2
Output: 02

for X=(0 to 9)
 for Y=(0 to 9)
 print “XY”

Loops are easy ways to iterate through a range of values. This simple
loop prints numbers from 00 to 99.

Explanation: This pseudocode starts by looping through the Xs but executing the code below it. The first bit is looping
through the Ys, so the Ys get looped through for each X. For each time there’s a new Y, it prints “XY”: 00, 01, 02, 03, … ,
10, 11, 12 … etc. If the last line was print “YX”, you’d get 10, 20, 30, … ,11, 21, 31 … etc.

X: 0
Y: 3
Output: 03

for M=(6 to 12, multiples of 3)
 for D=(21)
 for HH=(5 to 22)
 for MM=(0 to 55, multiples of 5)
 GenerateImage(M,D,HH,MM,”view1.vf”,”M-D-HH-MM.tif”)

Loops are easy ways to iterate through a range of values. This will
make an image every 5 minutes from 0500 to 2200 on 21 June, 21
September, and 21 December. The output filename is the time that the
image represents.

Important notes: This doesn’t check to see if the sun is above the horizon. Also, this can be very time consuming.

X=0
for M=(6 to 12, multiples of 3)
 for D=(21)
 for HH=(5 to 22)
 for MM=(0 to 55, multiples of 5)
 GenerateImage(M,D,HH,MM,”view1.vf”,”X.tif”)
 X=X+1

A few small changes and the image names can become a sequence.
This can be important to other functions or programs.

Note: A sequence is easily machine readable because it is a series of consecutive numbers. The time sequence is also
machine readable, but it may need to be “told” what each number represents. This also doesn’t check to see if the sun is
above the horizon.

Some Examples
What box?

1: A series of images to manually step through.

2: A set of images to be explored manually

This is especially useful for any set of images that isn't in a sequence –
if it makes logical sense to be able to go from any single image to
another.

Presentation methods include PDF, Impress, PowerPoint, Flash, and
web pages, all you need is a hyperlink to jump between images.

QMA Walkthrough

3: A series of images to be played automatically (an animation).

X=0
for M=(6 to 12, multiples of 3)
 for D=(21)
 for HH=(5 to 22)
 for MM=(0 to 55, multiples of 5)
 GenerateImage(M,D,HH,MM,”view1.vf”,”X.tif”)
 X=X+1

First, we generate a sequence of images, which can be very time
consuming.

X=0
for M=(6 to 12, multiples of 3)
 for D=(21)
 for HH=(5 to 22)
 for MM=(0 to 55, multiples of 5)
 GenerateImage(M,D,HH,MM,”view1.vf”,”X.tif”)
 X=X+1

First, we generate a sequence of images, which can be very time
consuming.

Then we stitch them together in an animation.

Easier done than said thanks to ffmpeg, a cross-platform video
encoder.

Note: See http://ffmpeg.org

http://ffmpeg.org/

Easier done than said thanks to ffmpeg, a cross-platform video
encoder.

 ffmpeg -sameq -i INPUT OUTPUT

Note: -sameq tries to match output quality based on input quality.

Our images are named 1.tif, 2.tif, 3.tif, etc., which is a machine readable
sequence of consecutive numbers.

 ffmpeg -sameq -i %d.tif OUTPUT

Note: ffmpeg follows the vprintf scheme for the d format string. For example, if you had images called 00001.tif, 00002.tif,
00003.tif, etc., the format string would be %05d.tif. For further information, see http://linux.die.net/man/3/vfprintf

http://linux.die.net/man/3/vfprintf

Finally, tell ffmpeg what video file type (container) to use.

 ffmpeg -sameq -i %d.tif movie.mov
.mpg
.avi
.wmv
.mkv
.divx
.flv
.swf
.asf
etc.

Splotchy admz animation

4: A simple shadow study animation.

Since in shadow studies we don't mind that we're not getting proper
illuminances everywhere, why don't we just model the shadows?

On its own, it's an abstract image without any context. But it renders
very quickly.

Relevant rpict options: -i -ab 0 -av 0 0 0 -ps 1

So we'll overlay it on a background image, like this one of the model
under a uniform sky.

You can do a linear or non-linear combination with pcomb, or use
photo manipulation toolkits like PIL or ImageMagick.

Note: See the pcomb -e option for non-linear combinations.

Overlay video

5: An animation from the sun's perspective.

The vector to the sun is part of the output from gensky.

gensky 4 1 12
Local solar time: 11.80
Solar altitude and azimuth: 56.1 -5.4
Ground ambient level: 18.8

void light solar
0
0
3 6.99e+006 6.99e+006 6.99e+006

solar source sun
0
0
4 0.052926 -0.555878 0.829577 0.5

void brightfunc skyfunc
2 skybr skybright.cal
0
7 1 1.63e+001 2.59e+001 7.97e-001 0.052926 -0.555878 0.829577

First, make sure you're using the parallel projection view type.

From gensky: 0.052926 -0.555878 0.829577

View parameters:
-vtl

Next, multiply each component by a large number, say 10000, and add
the x, y, and z of the camera target (say, 50, 150, 10) to get the view
point.

From gensky: 0.052926 -0.555878 0.829577

View parameters:
-vtl -vp 579.3 5708.8 8305.8

Then multiply each component by -1 to get the view vector from the
sun.

From gensky: 0.052926 -0.555878 0.829577

View parameters:
-vtl -vp 579.3 5708.8 8305.8 -vd -0.052926 0.555878 -0.829577

 Sunview animation

6: Quantifying solar exposure.

Since we can easily calculate the sun/shadow plot, why not calculate it
for an entire year?

For every daylight hour, create a sun/shadow rendering, then add
them together with pcomb.

+ + +

This is useful for aligning solar shading efforts to the regions that
would benefit the most.

Note: This isn't the Radiance false color scale, just a Photoshop Gradient Map.

7: Solar analemma from gensky output.

 Note: This is the view from laying on the ground and looking up at the sky, with your head to the North. See
http://en.wikipedia.org/wiki/Spherical_coordinate_system#Coordinate_system_conversions for conversions.

http://en.wikipedia.org/wiki/Spherical_coordinate_system#Coordinate_system_conversions

8: Solar analemma with weather information.

 Note: See http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_format_def.cfm for weather file format
definitions.

Instead of plotting a point at the sun's position, you can plot
information from a weather file.

http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_format_def.cfm

9: Map the analemma to the sky dome.

Shading simulation

10: Adding in electric light.

Adding electric light

Bonus: Just for fun...

Media facade

The Paperless Office
We’re not quite there yet.

Putting it on Paper
It’s called “Paper Trail” for a reason. It's the contractual obligation to

deliver static, hard-bound information.

Putting it on paper: Example

QMA Slider

Image Credit: Architectural Record, 05.08 (Vol. 196, Iss. 5), Page 246

Putting it on paper: Narrative Summary

Test points were establish on various gallery walls to record light levels. A series of test days and
times were used to measure daylight levels in galleries at the test points. Radiance models were
run for each configuration of skylight. Results for each of the test points were documented and
compared against a target value of 9.3 footcandles (100Lux). This target value was established
as part of the reciprocity calculation method proposed to establish an annual daylight
footcandle-hour budget figure. Refer to section 6.1 of this report for additional information on
reciprocity calculations. Iteration number 8 was selected for its ability to manage daylight levels
near the target with out additional diffusion and filtration of daylight by the winter garden
enclosure. (Figure 9) The architects were provided the geometry of the successful iteration to
integrate into the design (Figure 10 and 11).

Putting it on paper: Narrative Summary

Links: (Note: This page did not appear in the version of the presentation given at the conference.)

Flash Kit
GotAPI Actionscript
O'Reilly Flash Publications
ActionScript.org

Python
Python's Beginners Guide
GotAPI Python
O'Reilly Python Publications
Python Imaging Library
Parallel Python

Perl
O'Reilly Perl Publications

Lua

Axel Jacobs' Learnix (and tutorials)
Ubuntu

FFmpeg
ImageMagick
RadSunpath and RadDisplay

http://flashkit.com/
http://gotapi.com/
http://oreilly.com/pub/topic/flash
http://actionscript.org/
http://python.org/
http://wiki.python.org/moin/BeginnersGuide
http://gotapi.com/
http://oreilly.com/python
http://pythonware.com/products/pil/
http://parallelpython.com/
http://perl.org/
http://oreilly.com/perl
http://lua.org/
http://luminance.londonmet.ac.uk/learnix/
http://luminance.londonmet.ac.uk/learnix/docs.shtml
http://ubuntu.com/
http://ffmpeg.org/
http://imagemagick.org/
http://deluminaelab.com/en/tools.html

Interactive is the New Black

David Smith Design IALD, IES, EIT
Lighting Designer, Buro Happold

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	onepage.pdf
	Slide 1

