Complex Fenestration and Annual Simulation Greg Ward, Anyhere Software

Goals

- * Efficient annual simulations of buildings with complex fenestration (i.e., BTDF windows)
 - * General enough for real-world projects
 - * Ability to control systems dynamically
 - * Validation against similar tools (e.g., Daysim)

Funding & Partners

* Lawrence Berkeley National Laboratory

- * Eleanor Lee (PI), Christian Kohler, Maria Konstantoglou, Mike Rubin, Steve Selkowitz
- # Heschong-Mahone Group
 - * Lisa Heschong (PI), Mudit Saxena, Tim Perry
- Southern California Edison

Three Phase Method

* Phase I:

Use **rtcontrib** to get daylight coefficients relating sky patches to incident directions

* Phase II:

Use **rtcontrib** to relate exiting portal directions to desired measurement locations (e.g., image)

* Phase III (time-step calculation): sky * incident * BTDF * exiting

Our Matrix Equation

i = VTDs

where:

- i is the desired result vector (radiances, irradiances, etc.)
- V is the "View" matrix defining the lighting connection between results and exiting directions for a window group
- **T** is the "Transmission" matrix defining the BTDF of the window group
- D is the "Daylight" matrix defining the coefficients between incoming directions for the window group and sky patches
- **s** is a vector of sky patch luminances for a particular time and date

In a more explicit form, this would be:

sens1		sensledir1	 sens1edirN	edir1idir1	 edir1idirN	idir1dc1	 idir1dcK	sky1
	=							
sensM		sensMedir1	sensMedirN	edirNidir1	edirNidirN	idirNdc1	idirNdcK	skyK

Phase I: Compute D

- * Apply rtcontrib to relate sky patches to incident directions on window exterior
 - * Need separate calculation for each orientation and major geometric feature
 - * New genklemsamp utility generates samples over a given window group
 - Written in Perl -- gah!

Phase I Example

genklemsamp -vd -0.416041763 -0.909345507 0 -c 20000 \
 material_detailed.rad bg5wind.rad \
 rtcontrib -c 20000 -faf -f reinhart.cal -b rbin -bn Nrbins -m skyglow \
 @rtc_dmx.opt model_dumbsky.oct > SouthGroup.dmx

Phase I Example

View defines window group orientation

```
genklemsamp -vd -0.416041763 -0.909345507 0 -c 20000 \
    material_detailed.rad bg5wind.rad \
    rtcontrib -c 20000 -faf -f reinhart.cal -b rbin -bn Nrbins -m skyglow \
    @rtc_dmx.opt model_dumbsky.oct > SouthGroup.dmx
```

Number of samples per direction must match

Phase I Example

Window description may contain multiple surfaces, subset of octree

Sky uses Reinhart's subdivision of Tregenza sky patches for better accuracy

Example Space

Phase II: Compute V

* Use rtcontrib to relate sensor locations to exiting directions on window interiors

* A single run can cover all window groups

* The klems_int.cal file maps to BTDF coord.

Phase II Example

Phase II Example

Generating a set of image components

vwrays -ff -vf back.vf -x 1024 -y 1024 \
 rtcontrib `vwrays -vf back.vf -x 1024 -y 1024 -d` -ffc \
 -o comp/back_%s%03d.hdr -f klems_int.cal -bn Nkbins \
 -b kbinE -m EastGroup -b kbinS -m SouthGroup \
 -b kbinN -m NorthGroup -b kbinW -m WestGroup \
 @render.opt model.oct

The klems_int.cal file defines Klems patches over specific hemispheres

Phase II Example

What is a reasonable set of rendering parameters?

```
vwrays -ff -vf back.vf -x 1024 -y 1024 \
    rtcontrib `vwrays -vf back.vf -x 1024 -y 1024 -d` -ffc \
    -o comp/back_%s_%03d.hdr -f klems_int.cal -bn Nkbins \
    -b kbinE -m EastGroup -b kbinS -m SouthGroup \
    -b kbinN -m NorthGroup -b kbinW -m WestGroup \
    @render.opt model.oct
```

-ab 4 -ds .05 -dj .7 -ad 2000 -lw 2e-4

Remember that windows are sources & No indirect caching

Outgoing Directions for One Window Group

				~ !!!				- m	Curry .		e
						E					
m	(m)	m	Ē					тц,			
		- 111			e mil						
Ē		. With	- mi	- June	-		-			E	E-5
									-		
Ð				Ţ	-		12- III (E III L
	(1	2								-
(E	-	-	-		-			1- m (12- III (-	
E							Rent S			2.001	
	E IIII				-		-	-		4 m 5	20 MIL
H	-			-	-	-		е ш	E m	20 111 1	E III I

Other Window Groups

Phase III: Time Step

* Use gentregvec to create sky patch vector s

* Use dctimestep to multiply it all together

Phase III Example

gensky 9 21 12:00 -a 37.71 -o 122.21 -m 120 | genskyvec > sky.dat pcomb '!dctimestep comp/back_SouthGroup%03d.hdr blinds1.xml SouthGroup.dmx sky.dat' \ '!dctimestep comp/back_WestGroup%03d.hdr blinds2.xml WestGroup.dmx sky.dat' \ '!dctimestep comp/back_NorthGroup%03d.hdr blinds2.xml NorthGroup.dmx sky.dat' \ '!dctimestep comp/back_EastGroup_%03d.hdr blinds1.xml EastGroup.dmx sky.dat' \ '!dctimestep comp/back_EastGroup_%03d.hdr blinds1.xml EastGroup.dmx sky.dat' \ '!dctimestep comp/back_EastGroup_%03d.hdr blinds1.xml EastGroup.dmx sky.dat' \

Phase III Example

Generate sky vector for noon at the Autumn equinox

```
gensky 9 21 12:00 -a 37.71 -o 122.21 -m 120 | genskyvec > sky.dat
pcomb '!dctimestep comp/back_SouthGroup%03d.hdr blinds1.xml SouthGroup.dmx sky.dat' \
    '!dctimestep comp/back_WestGroup%03d.hdr blinds2.xml WestGroup.dmx sky.dat' \
    '!dctimestep comp/back_NorthGroup%03d.hdr blinds2.xml NorthGroup.dmx sky.dat' \
    '!dctimestep comp/back_EastGroup_%03d.hdr blinds1.xml EastGroup.dmx sky.dat' \
    '!dctimestep comp/back_TastGroup_%03d.hdr blinds1.xml EastGroup.dmx sky.dat' \
    '!dctimestep comp/back_TastGroup_%03d.hdr blinds1.xml EastGroup.dmx sky.dat' \
```

Each call to dctimestep computes contributions of one window group

Time to run the above is less than 8 seconds on my laptop

Equinox Simulation

Validation Work (1)

* Heschong-Mahone Group working under contract with Southern California Edison

* Compared measurements to Daysim on 61 spaces with help from Christoph Reinhart and others here, there, and everywhere

Just finishing rtcontrib comparisons

* Waiting for report, but so far, so good

Validation Work (2)

* Lawrence Berkeley National Laboratory

- * Eleanor Lee working with Maria Konstantoglou, Anne Iversen & others and contracting Rick Mistrick of UPenn
- * Comparisons with mkillum and hand calculations
- * Work is ongoing, and Eleanor is up next...

Work Still To Be Done

- * Better interface needed (even for me)
- Sources of BTDF data
 - * Mike Rubin's group is working on this at LBNL
 - * Andrew McNeil proved rtcontrib can be used
- * Integrating controls, whole building simulation

Draw Your Own Conclusion

