New Radiance Developments Greg Ward Anyhere Software #### Radiance 3.9 Bug Fixes - Prehistoric bug in octree memory usage (E. Reinhard) - * Antimatter + shadow cache (J. Mardaljevic) - * Source photometry in ies2rad (Z. Rogers) - + Orientation error in replmarks (Z. Rogers) #### Additions in 3.9 - * New falsecolor scale (& -s auto) - * Added BTDF input to mkillum - * Added rtcontrib -c option to accumulate rays - * New rsensor program for photosensor sim. - * New "planisphere" (stereographic) view type #### Old Falsecolor Scale #### New Falsecolor Scale #### BTDF Input to mkillum - * The bidirectional transmittance distribution function (BTDF) describes how light passes through a surface - * Some devices exist for measuring BTDFs - * General ray-tracers can compute BTDFs - Using BTDFs avoids sampling issues/limits ## Doesn't Radiance Have a BTDF Material Already? - * Yes, but it only works for light sources - * Sky contributions are counted as diffuse - * This is a poor approximation for many materials - * Fully enabling the BTDF type is difficult and would be computationally expensive ### How to Use a BTDF in Radiance - * We can insert the BTDF at the appropriate point in a mkillum precalculation - * Special care is required for light sources - * Annual calculations require rtcontrib #### Standard mkillum Ray samples sent towards illum "front" Angle Stratification Position Distribution # 145 angles for ncident/exiting #### mkillum BTDF - * Send outgoing rays from opposite side of fenestration according to BTDF angles - * Sample rays to light sources if needed - * Pass incident light distribution through BTDF - * Resample transmitted light and store as window output distribution (as before) #### Old mkillum rendering #### New mkillum rendering #### New mkillum Settings - * Up direction (to orient BTDFs on windows): u=[+Z] - Fenestration thickness (for sampling):t=[0] - * BTDF data file (alt. samples/steradian): d=[48] #### rtcontrib -c Option Permits optical calculations #### New rsensor Program - * Sponsored by Architectural Energy Corporation to support SPOT program - * Computes signal value for a given photometer location and spatial sensitivity distribution - * Input is octree and one or more sensor sensitivity array(s) in ASCII spreadsheet - * Output is one RGB value per sensor #### Example Spatial Data | Elevation | Azimth | | | | | |-----------|----------|----------|----------|----------|----------| | degrees | 0 | 2 | 4 | 6 | 8 | | 0 | 9.90E-01 | 9.94E-01 | 9.94E-01 | 9.95E-01 | 9.95E-01 | | 2 | 8.46E-01 | 8.39E-01 | 8.43E-01 | 8.33E-01 | 8.39E-01 | | 4 | 6.89E-01 | 6.84E-01 | 6.78E-01 | 6.72E-01 | 6.68E-01 | | 6 | 5.67E-01 | 5.96E-01 | 5.61E-01 | 5.90E-01 | 5.55E-01 | | 8 | 5.40E-01 | 5.39E-01 | 5.40E-01 | 5.40E-01 | 5.42E-01 | | 10 | 4.52E-01 | 4.47E-01 | 4.45E-01 | 4.43E-01 | 4.44E-01 | | 12 | 3.60E-01 | 3.57E-01 | 3.55E-01 | 3.53E-01 | 3.53E-01 | | 14 | 2.66E-01 | 2.62E-01 | 2.61E-01 | 2.59E-01 | 2.59E-01 | | 16 | 1.90E-01 | 1.88E-01 | 1.88E-01 | 1.86E-01 | 1.86E-01 | | 18 | 1.52E-01 | 1.51E-01 | 1.51E-01 | 1.49E-01 | 1.50E-01 | | 20 | 1.30E-01 | 1.30E-01 | 1.30E-01 | 1.29E-01 | 1.29E-01 | #### New Planisphere View #### A.K.A. "Stereographic" - * Avoiding confusion with binocular stereo - * Requested by Axel Jacobs of LEARN - + New view type option -vts - * Angle-preserving projection most often used for daylighting applications - View angles must be less than 360° #### Axel's Example Scene Lifted from luminance.londonmet.ac.uk/pickup/projections.pdf #### Angular Fisheye View #### Hemispherical View #### Planisphere View #### So Far in 4.0 - * Added rvu -n option for parallel processing - * Rewrote main using raypealls library - * Not currently working for Windows - * Linear speed-up with number of processors - * Process count changed via "new" command - * Also supported with rad -N option