Capturing 3-D Texture with a Digital Camera

Greg Ward *Anyhere Software*

Mashhuda Glencross, Caroline Jay, Jun Liu, Francho Melendez, Roger Hubbold

Manchester University

Depth Hallucination – The Short Story

- Acquire Textured surface model
 - From a single view
 - Using only a digital camera and a flash.

Why Do We Want Depth?

- Classical Texture Mapping
 - Images mapped to 2D geometry
 - No self-shadowing/silhouette detail
- Real-world textured surfaces
 - Visually rich, changes with view and lighting
 - Common in nature and the built environment
 - Aesthetics / ornamentation

Real-World Examples

Depth Hallucination Method

Steps:

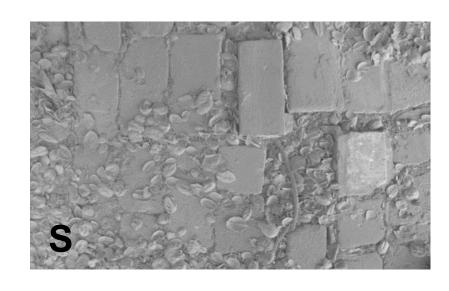
- Capture flash / No-flash image pair
- Estimate Albedo
- Estimate a shading image
- Calculate depth

Assumptions:

- Diffuse/sky illumination
- Global curvature ignored
- Specular reflectance removed

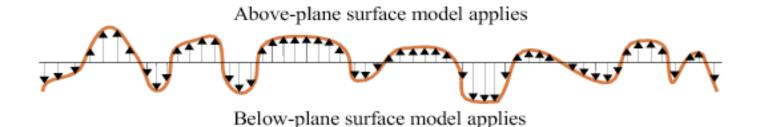
Albedo Estimation

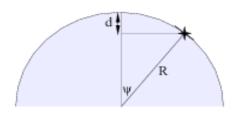
- Starting with flash / no-flash input pair
 - Correct for Ambient lighting using no-flash image
 - Correct for vignetting using flash calibration image
- Result Albedo map



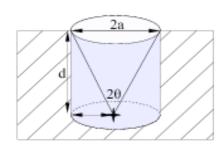
$$\frac{I_f(j) - I_d(j)}{I_c(j)}$$

Compute Shading Image

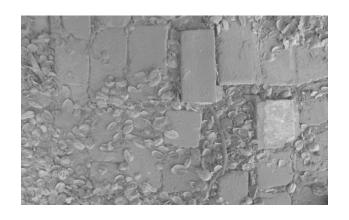


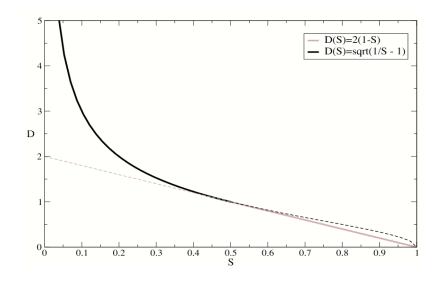

Depth Estimation from Shading Image

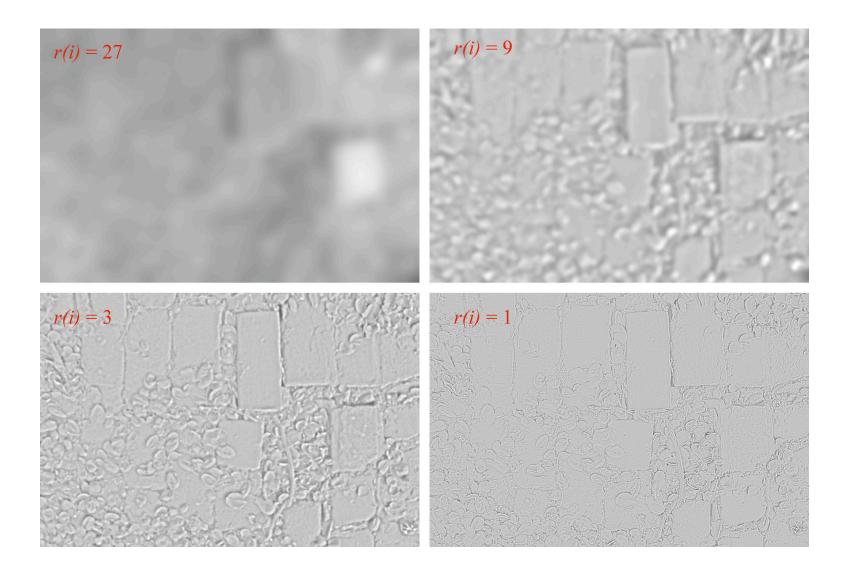
 We formulate a hypothesis about local surface structure



Above/Below Plane Models


Above plane model


Below plane model


Combined Surface Model

$$D(S) = d/a = \begin{cases} Sqrt(1/S-1) \\ 2(1-S) \end{cases}$$

Apply at Multiple Scales

Simplified Capture w/o Flash

- Histogram Matching
 - Needs exemplar model
 - Single diffuse-lit photo
 - Match histograms
 - Create rendering

Validation

- First user study
 - Rank sequentially presented images
 - Photos 3.97
 - Relit images 3.22
 - Histogram matched 2.98

Validation

- Second user study
 - Select most plausible surface
 - No significant difference in people's subjective choices

Limitations

- Our method will fail if:
 - Surface geometry cannot be represented as a height field
 - Daylight is heavily biased towards one dominant direction
 - Surface contains highly reflective or translucent materials

Conclusion

- Simple method
- Results like photographs
 - 75% of participants rated our images more likely to be photos
 - Participants unable to decide if renderings of hallucinated depth or laser-scans more plausible

