Dynamic daylight simulations for façade optimization (and some other applications)

Santiago Torres

7th International RADIANCE workshop 30-31 October 2008 Fribourg <u>Switzerland</u>

Considered

- Climate
- Facade geometry
- Occupant's response to glare
- Resulting illuminance on work plane

Not considered

- Furniture location
- Lighting control strategies
- Sensor placement
- Type of luminaire / type of blinds
- Diffusing window panes
- ... etc.

Assessment of glare conditions

0.2

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Survey answers compared to calculated glare (% dissatisfied vs. glare index)

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Survey answers compared to calculated glare (% of answers for closing blinds)

Model definition

1-window width

2-sill height

3-window height

4-ext lightshelf depth

5-int lightshelf depth

6-lightshelf height

7-overhang depth

8-low sunshade depth

9-high sunshade depth

10-Nr. Shades / window

11-Nr. Windows

12-window sill depth

13-wall reflectance

14-ext lightshelf reflec.

15-int lightshelf reflec.

16-window sill reflec.

17-sunshade reflectance

18-window size factor

19-shading size factor

20-window transmission

21-reflective Lightshelf (Y/N)

Time step calculation

- 1 Determine sky conditions from weather data
- 2 Calculate discomfort of users from glare probability index
- 3 Determine the position of blinds (open closed) proportionally to discomfort
- 4 Calculate daylight illuminance on work plane considering the position of blinds $(0 \le U_{ho} \le E_d)$
- 5 Calculate Fitness with data from all hours

$$F = \frac{U_a}{500lx} = \frac{\sum_{h=0}^{H} \sum_{o}^{O} U_{ho}}{H \cdot O \cdot 500lx}$$

Sky contribution (Tregenza model)

rtcontrib with sky subdivisions adapted for vertical openings

"Real" time step calculation

- Determine contributions with blinds open and closed (vertical at eye level and horizontal on work plane for each observer)
- 1 Calculate vertical illuminance at eye level for each observer=> calculate discomfort glare and closing probability
- 2 Determine which set of contributions to use for illuminance calculations => calculate average illuminance on work plane
- 3 Add average illuminance to annual total
- 4 Calculate Fitness with data from all hours

Typical evolution

Typical evolution

Genetic algorithm and other optimization methods

Advantages:

- Can consider the simultaneous variation of several parameters
- Increase the relevance of the cases studied
- Complements parametric studies

Disadvantages:

- Requires large number of simulations
- Different cases may require different optimization methods

Possible improvements:

- Larger population size
- Statistical analysis of climate data to improve the significance of the days that are simulated
- Selective fitness:
 - define separate fitness for different times of the year (e.g. summer / winter) and increase the probability of breeding between complementary individuals
- Extend the model to include other factors (e.g. thermal performance)

Translucent materials in a museum environment - Background

Translucent materials in a museum environment - Background

Translucent materials in a museum environment

Approximation of parameters for "trans" material

Approximation of parameters for "trans" material

Translucent materials in a museum environment

Translucent materials in a museum environment

