Minimally Intrusive Evaluation of Visual Comfort in the Normal Workplace

B. Painter, D. Fan, J. Mardaljevic

Institute of Energy and Sustainable Development De Montfort University, Leicester, UK

Project aims

- Measure luminance conditions in a normal workspace.
- Collect user feedback regarding visual comfort, in particular glare perception.

Benefits of studying real workspaces:

- Customized desk layout.
- Users are carrying out their usual tasks.
- Established use of shading devices and task lighting.
- Develop data collection method for long term monitoring in real workspaces.
- Use data to improve daylight glare indices.

VisCom method Components

User survey

Glare rating

On-screen form on user's PC

Measurements

Luminance maps

HDR capture device

- Mac Mini
- Canon EOS 400D
- Fisheye lens

VisCom method Requirements

- Minimal interference with normal work patterns.
- Long term to capture seasonal variability.
- Automated data collection and storage.
- Timing simultaneous survey completion and HDR capture.

VisCom method Workstation setup

VisCom method Data collection network

The on-sceen survey

- Every 30 minutes during working hours.
- Input of weather data possible trigger survey only if glare is likely.
- User can delay survey.
- Self-elected survey start if glare is experienced.
- Question: VisCom survey?

The on-sceen survey

- Every 30 minutes during working hours.
- Input of weather data possible trigger survey only if glare options
- User can del

 Proceed to the VisCom Survey (or 5 minutes later)?
 Time remaining: 0 minutes 57 seconds.

 Yes

 Later
- Self-elected survey start if glare is experienced.
- Dialog box: Proceed to VisCom survey?

The on-sceen survey

- Java form.
- Glare scale (based on Osterhaus¹).
- Image for selection of glare source.
- Max 5 clicks to complete and submit.
- Submission of survey triggers image capture.

HDR capture & calibration

HDR capture & calibration

Measured data points (cross) and vignetting function (solid line)

Digital filter

[3] Richard I. Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University Press, 2003.

[4] C.Ó. Sánchez Sorzano, P. Thévenaz, M. Unser. Elastic Registration of Biological Images Using Vector-Spline Regularization. IEEE Trans. Biomedical Engineering, 52(4): 652-663, April 2005.

[5] Gert Wollny, Frithjof Kruggel. Computational Cost of Non-Rigid Registration Algorithms Based on Fluid Dynamics. IEEE Trans. Med. Imaging 21(8): 946-952 (2002)

Linear transform

Source image

- Feature points selection such as Harris corner detector or SIFT.
- Apply a 3 x 3 global matrix across the whole image.
- Distortion correction as a preprocessing step.

Target image

Warped image

Spline transform

Source image

- Imagine the image is a piece of plastic sheet.
- Stretches can be done locally, rather than the use of global matrix.

Target image

Warped image

Image warping - Comparison

Spline transform

- Difficult to assess the performance of the methods visually
 - → Glare patch analysis with comparison metrics

Binary glare patch extraction

Glare source binary image (manually extracted)

Comparison metrics - Geometry

• Patch centre: (X_m, Y_m) ,

• Mean solid angle: (S_m),

- Total surface area in pixel: (A),
- Positive Prediction Value: (PPV).

Target Image

Warped Image

计算程序	Glare Patch	Background
Glare Patch	True Positive	False Positive
Background	False Negative	True Negative

$$PPV = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}}$$

Comparison metrics - Geometry

	X _m	Ym	Sm	А	PPV
Linear Transform	13.23%	28.77%	56.45%	37.95%	88.99%
Spline Transform	1.60%	5.38%	3.16%	10.04%	73.72%

→ The spline method performs better than the linear transformation, based on metrics related to the geometry of the glare patch.

The data (so far)

- Five Workstations
- March May 2008: refinement of method
- Since May 2008: data collection

Survey response data

May - October 2008

	< noticeable	> just noticeable	> just disturbing	> intolerable
WS1	152	4	3	2
WS2	2	15	3	0
WS3	7	9	2	0
WS4	9	30	10	0
WS5	33	11	0	0
total	203	69	18	2

< noticeable: There is some glare in the field of view, but it does not affect user at all.

noticeable: Conditions which are uncomfortable but could be tolerated for the duration of a working day.

disturbing: lighting conditions which the user could tolerate while completing the present task (for approximately 15 to 30 minutes).

intolerable: extreme glare which the user cannot tolerate and in which he/she would require an immediate change of the lighting conditions in order to continue working.

Outlook

- Further investigate effect of warping on luminance data.
- Process HDR data and link with survey answers.
- Test and apply method in other locations.
- Expand data set, i.e. to include other workstation layouts, task and demographics.
- Use data to assess existing glare metrics.
- Develop new glare metric for use in climatebased daylight simulation studies.

Thank you.

bpainter@dmu.ac.uk

dfan@dmu.ac.uk

jm@dmu.ac.uk

Institute of Energy and Sustainable Development Queens Building

The Gateway

Leicester

LE1 9BH

UK