Modeling Heliostat Fields using Radiance and Mapping Heat Flux on the Central Receiver

byGermain Augsburger

Motivations & Objectives (1)

Definition: Solar Power Tower

Solar power plant that concentrates the rays of sunshine through a **field** of mirrors called **heliostats** onto a **thermal receiver** built at the top of a **central tower**. Thus the captured thermal power is converted into electrical power through a chosen thermodynamic cycle that is still nowadays not different from other usual power plants.

Nowadays: Typical Performance

 \square 10 MW_e for 50 MW_{th}

Aims:

- ☐ Much higher **Performance** (up to 300 MW_{th})
- ☐ Much lower **Specific Energy Costs**
- ☐ Low Visual Impact & High Acceptance

PS10, Sanlúcar la Mayor, Spain, 2007

Motivations & Objectives (2)

Thermo-economic Optimization of Heliostat Fields

Tool

Q-MOO Multi-Objective Optimizer (evolutionary algorithms)

Heliostat Field Visualization & Heat Flux Mapping on the Central Receiver

Specific **Existing** Tools

☐ UHC, DELSOL, HFLCAL, MIRVAL, HELIOS, FIAT LUX, SoITRACE -

Aim

☐ Use *Radiance*

Reasons

- Multipurpose
- ☐ Free Software
- ☐ Operating on *Linux*

Radiance Model (1)

Generating the Sun

Inputs

- ☐ Sun **Elevation** Angle (ex.: 75°)
- ☐ Sun **Azimuth** Angle (ex.: 0°)
- ☐ Sun Horizontal **Direct Radiation** (ex.: 800 W/m²)

Tool

□ gensky -ang 75 0 -R 800

Output

□ sun.rad

Only direct radiation is relevant: no sky needed

Radiance Model (2)

Creating, Positioning & Orienting a Single Heliostat (1)

Inputs

- ☐ Heliostat **Dimensions** wxh (ex.: 12.94m x 10.12m)
- ☐ Heliostat **Subdivision** (ex.: 4x7 facets)
- ☐ Heliostat **Base** (ex.: 1m)
- ☐ Heliostat **Position** (ex.: 0m W-E, 100m S-N)
- ☐ Heliostat **Distance** to Aim Point (ex.: 137.55m)
- ☐ Mirror **Reflectivity** (ex.: 88%)
- ☐ Atmospheric **Transmission** (ex.: 98%)
- ☐ Standard Deviation of **Tracking Error** (ex.: 1.3mrad)
- **☐ Sun** Position (ex.: $75^{\circ},0^{\circ}$)
- ☐ Aim Point Height (ex.: 100.5m)

Sanlucar 120, PS10, Sanlúcar la Mayor, Spain, 2007

Radiance Model (3)

Creating, Positioning & Orienting a Single Heliostat (2)

```
Tool
```

```
☐ void mirror hel mat
   ()
   3 0.86 0.86 0.86 (reflectivity x transmission)
   !gensurf hel mat hel
   '(s-.5)*12.94'
   (t-.5)*10.12
   '-sqrt((2*137.55)^2-(s-.5)^2*12.94^2-(t-.5)^2*10.12^2)+2*137.55' 4 7
     xform -n hel -rx 24.31 -rz 0 -t 0 100 6.94
Output
 □ hel.rad
```


Sphere whose radius is twice the focal length (approximating parabolic shape)

Radiance Model (4)

Generating a Heliostat Field

Input

☐ Field Layout (X W-E, Y S-N)

Tool

☐ Same Process as for 1 Single Heliostat

Output

☐ field.rad

Radiance Model (5)

Creating a Meshgrid for Measurements on the Receiver

Radiance Model (6)

Measuring Heat Flux on the Receiver thanks to *rtrace*

Input

- ☐ meshgrid.dat
- ☐ fieldscene.oct

Tool

□ rtrace -I -ov -h fieldscene.oct < meshgrid.dat
| rcalc -e '\$1=0.265*\$1+0.670*\$2+0.065*\$3;'</pre>

Output

□ >> heatflux.dat

Validation

Comparisons with some Published Experimental Results & Simulations

- Total **Power** is higher (between 5 and 10%)
- ☐ Overall **Aspects** of the Heat Flux Distribution match
- Heat Flux **Gradient** and **Peak** are much higher (often twice higher)

Conclusions & Future Tasks

Overall Observations

- ☐ The model is **reliable** concerning **total thermal power**
- Still needs validation of the heat flux distribution

Potential Improvements

- ☐ Implement Facet Waviness
- Generate Curved Facets
- Replace Pillbox Sunshape with a Kuiper Sunshape

Main References for the Presentation

- [1] Abengoa Solar New Technologies, Spain, www.abengoa.es
- [2] Dr. Valerio, PS10: a 11.0-MWe Solar Tower Power Plant with Saturated Steam Receiver (Slides), Solucar, 2006
- [3] G. W. Larson and R. Shakespeare, Rendering with Radiance, The Art and Science of Lighting Visualization, Morgan Kaufmann Publishers, San Francisco, California, 1998
- [4] H. Zhang, Multi-objective thermoeconomic optimisation of the design of heliostat field of solar tower power plants, 2007
- [5] J. Fernàndez Reche, Reflectance measurement in solar tower heliostats fields, Solar Energy 80 (2006) 779786
- [6] M. Sanchez and M. Romero, methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces, Solar Energy, 80 (2006):861-874