Comparing an interactive hybrid global illumination method with Radiance

Yu Sheng (shengyu@cs.rpi.edu)

Department of Computer Science,

Rensselaer Polytechnic Institute

Outline

- Introduction
- Interactive Rendering Method
- Supporting Complex Fenestration Systems
- Comparing with Radiance
- Future work

Outline

- Introduction
- Interactive Rendering Method
- Supporting Complex Fenestration Systems
- Comparing with Radiance
- Future work

Project Goals

 Providing an interactive, quantitative and qualitative daylighting simulation tool for architectural design

- Appropriate for use in schematic design: an early stage of the architectural design process
- Increase the use of daylighting and thus save energy
- Provide simulation of Complex Fenestration Systems
- A useful complementary tool of Radiance

Radiance

- Pros
 - High accuracy
 - A release package with a lot of useful tools
- Cons
 - □ Long rendering time: mins~hours
 - View dependent
 - User needs lots of knowledge to produce quick images

Related work

- A lot of techniques accelerating rendering speed
 - Carsten, et al. "Implicit visibility and antiradiance for interactive Global Illumination", SIGGRAPH 2007.
 - Mangesh, et al. "Interactive Global Illumination in Dynamic Environments using commodity Graphics Hardware", Pacific Graphics 2003.
- Only a few are used in the area of architectural design

Outline

- Introduction
- Interactive Rendering Method
- Supporting Complex Fenestration Systems
- Comparing with Radiance
- Future work

Radiosity

- Widely used global illumination method
- Can be accelerated by hardware
- Works for diffuse materials
- View independent
- Interactive rendering (1fps)

Goral et al, "Modeling the interaction of light between diffuse surfaces"_

Radiosity

- Why not just using Radiosity?
 - Works for diffuse light
 - Inaccurate shadow due to low resolution mesh
 - We need hard shadows!
- Why do we need hard shadows?
 - More realistic
 - More intuition about scene
 - Previsualize the unexpected illumination caused by Complex Fenestration System.
 - Useful for glare computation

Shadow Volumes

- Real time
- Hardware acceleration
- Proposed by Frank Crow in 1977

Shadow volume is used in some games (from Doom3)

Our System

- Platform: Linux, FreeBSD, Windows (Cygwin)
- User-friendly UI
 - Support mouse gesture: rotation, translation, zoom
 - Different rendering modes
 - Changing time/day
 - Save rendering to images

Video

Play Video

Outline

- Introduction
- Interactive Rendering Method
- Supporting Complex Fenestration Systems
- Comparing with Radiance
- Future work

Complex fenestration systems (CFS)

- Complex fenestration systems (CFS)
 - Prismatic panel
 - Laser-cut panel
- Usage:
 - Redirect daylighting

prismatic

Laser-cut

□ More evenly illuminate interior spaces

Rendered by RADIANCE of a laser cut panel (Images from Andersen, 2004)

Directions of virtual lights

Brightness of virtual lights

- Each light covers part of the brightness.
- Calculate the brightness of each light by the portion of light rays that reaches each micro-facet.

$$b_1 = 1 * f_1 / (f_1 + f_2)$$

$$b_2 = 1 * f_1 / (f_1 + f_2)$$

Laser Cut Panel

- We don't have the geometry
- Approximate 4D BTDF data with
 - K specular lobes
 - $\hfill\Box$ Coverage angle α
 - Rank the lobes
- We use
 - □ K=3
 - $\alpha = 22^{\circ}$
 - **B2-100%**

Interpolation for arbitrary direction

- Triangulation
 - Delaunay triangulation
 - 56 sample on one quarter of the hemisphere
- Triangle Interpolation
 - barycentric coordinates
 - \Box P= α A + β B + γ C
 - □ A, B, C directions of different lobes

Simulation Result

Laser cut panel, time: 10am, March 21 Hard for architects to do by hand

Outline

- Introduction
- Interactive Rendering Method
- Supporting Complex Fenestration Systems
- Comparing with Radiance
- Future work

Comparing rendering with Radiance

- Comparison renderings
 - Our rendering
 - Ground truth rendering by Radiance
 - Ambient: bounce14, accuracy .1, resolution 256, division 4096, super-samples 1024
 - Secondary source presampling density: 8192, direct threshold: .05
 - Limit: reflection 24, weight .0002
 - Fast rendering by Radiance
 - Ambient: bounce 5, accuracy .1, resolution 64, division 1024, supersamples 128
 - Secondary source presampling density: 1024, direct threshold: .1
 - Limit: reflection 10, weight .001
- Two comparison directions
 - Rendering speed
 - Rendering accuracy (Qualitatively and quantitatively)

Rendering speed

- Hardware info: (CPU: Intel Core 2 E6400, Memory: 2G)
- Scene: 1222 Triangles
- Our rendering
 - Radiosity computed on CPU
 - Shadow computed by graphics card
 - Statistics data:
 - Precomputation time: 10s
 - Changing time/day: 1.5s
 - Changing camera: < 0.1s
- Radiance Ground truth
 - 45 minutes for one camera position
- Radiance Fast rendering
 - 5 minutes 16 seconds for one camera position

Accuracy

- The same day, time, same latitude, longitude
- The same view file, the same exposure.
- Qualitatively
 - Visual effects
- Quantitatively
 - Comparison with Ground truth rendering
 - our rendering, fast Radiance rendering
 - Comparison criteria
 - Average pixel brightness difference
 - Maximal pixel brightness difference
 - RMS pixel brightness difference

Quantitative Comparison (Example B)

- Our rendering vs.
 Radiance Ground truth
 - □ Average diff: 0.029
 - Maximal diff: 0.652 (alias)
 - □ RMS diff: 0.045
- Fast Radiance rendering vs.
 Radiance Ground truth
 - Average diff: 0.157
 - Maximal diff: 0.803
 - RMS diff: 0.165

Fast rendering

Future work

- Compare CFS rendering with Radiance
 - Get Radiance to do renderings with BTDF data
 - Greg Ward's work
 - Jan de Boer
 - Hopefully, we can get similar comparison results, but perhaps more due to our simulation of BTDF data
- Use GPU
 - Improve the rendering speed and interactivity

Thanks and Questions?

Radiance Rendering commands

- Ground truth rendering by Radiance
 - rpict -ab 14 -dp 8192 -ar 256 -ms 0.033 -ds .07 -dt .05 -dc .75 -dr 3 -sj 1 -st .01 -aa .1 -ad 4096 -as 1024 -lr 24 -lw .0002 -x 1024 -y 1024
- Fast rendering by Radiance
 - rpict -ab 5 -dp 1024 -ar 64 -ms 0.03 -ds .15 -dt .1 -dc .95 -dr 3 -sj 1 -st .03 -aa .1 -ad 1024 -as 128 -lr 10 -lw .001 -x 1024 -y 1024