# CALCULATION OF THE CIRCADIAN ILLUMINANCE DISTRIBUTION WITH RADIANCE

Wandachowicz Krzysztof

Poznan University of Technology

#### ABSTRACT

New circadian photoreceptors are be able to regulate natural body clock. Using spectral circadian efficiency function it is possible to define circadian quantities. Calculation of circadian illuminance distribution using interreflections can be done using spectral values of reflectance and spectral distribution of radiation.

Keywords: circadian cycle, illuminance distribution calculation

## **1. INTRODUCTION**

The configuration of the photometric values connected with the vision process bases upon the spectral luminous efficiency function V( $\lambda$ ) (Fig. 1). There are known other impacts of the optical radiation on a human organism related with the photo-biological processes that cause various effects (conjunctivitis, skin irritation and bacteria destruction). The configurations connected with these processes base upon known spectral luminous efficiency of radiation functions S( $\lambda$ ).



Fig. 1. The relative spectral luminous efficiency functions V( $\lambda$ ) and relative spectral circadian efficiency functions C( $\lambda$ ).

In 2001, there has been published the data describing the newly discovered receptors located on the eve retina [2, 3]. Stimulation of these receptors influences attenuation of the melatonin production. The melatonin hormone level changes during the day and the mentioned changes are connected with so-called day-around cycle. The day-around cycle denominated the circadian cycle (originated from Latin circa-around and dies-day), is one of the oldest inborn rhythms and has created many persisting physiological mechanisms (as for example sleepiness when people got sleepy in the evening). The circadian cycle is influenced mainly by the light that operates as the synchroniser of the day-and-night cycle as well as synchroniser of the activity and rest phases (wakefulness - sleep). When the light quantity is reduced as happens during the winter, there can occur the circadian cycle disorder (increase of melatonin level), as well as the mood depression denominated season depression. However, in case we have recognized the properties of the receptor responsible indirectly for the circadian cycle then we can influence the cycle. On the basis of the published spectral circadian responsivity of the human eye [2, 3], there has been recognized the relative spectral circadian efficiency function  $C(\lambda)$  [1] (Fig. 1). At present, there is conducted a research that tends towards establishing the required radiation doses assumed in accordance with the circadian efficiency criteria that shall cause the desired results as far as the circadian cycle formation is concerned.

#### 2. CIRCADIAN RADIOMETRIC QUANTITIES

The circadian flux  $\Phi_c$  can be defined with use of the equation (1) containing the value K<sub>m</sub> that represents the maximum spectral luminous efficiency value equal to 683 [Im W<sup>-1</sup>], and  $\Phi_{e\lambda}$  [W m<sup>-1</sup>]. represents the spectral distribution of radiant flux.

$$\Phi_{c} = K_{m} \int_{\lambda} \Phi_{e\lambda} C(\lambda) d(\lambda) \quad [Im_{c}]$$
<sup>(1)</sup>

In general, when defining the effective flux of a given radiation there is applied the constant K equal to 1. Then, the flux value is expressed in the effective Watts  $[W_{ef}]$  [4]. The herein described method of circadian flux definition (1) has been presented in a number of papers [1] and the unit of such a quantity is the circadian luminous flux  $[Im_C]$ . The constant K<sub>m</sub> and adjective luminous have been connected until now with the photometric values configuration. The introduction of these concepts to the circadian quantities description can be explained and justified by the need of seizing their relative changes in respect of the photometric (luminous) values. When accepting this course of reasoning, it is possible to introduce successive quantities such as the circadian illuminance  $E_C$  and the circadian luminance  $L_C$  (2, 3).

$$E_{c} = K_{m} \int_{\lambda} E_{e\lambda} C(\lambda) d(\lambda) \quad [Ix_{c}]$$
<sup>(2)</sup>

$$L_{c} = K_{m} \int_{\lambda} L_{e\lambda} C(\lambda) d(\lambda) \quad [cd_{c} \ m^{-2}]$$
(3)

where:  $E_{e\lambda}$  - spectral distribution of irradiance,  $L_{e\lambda}$  - spectral distribution of radiance

When applying the analogy to the luminous flux reflectance definition  $\rho$  there can be introduced the dependence describing the circadian flux reflectance factor  $\rho_c$  (4).

$$\rho_{c} = \frac{\Phi_{c\rho}}{\Phi_{c}} = \frac{\kappa_{m} \int \Phi_{e\lambda} \rho_{\lambda} C(\lambda) d(\lambda)}{\kappa_{m} \int \Phi_{e\lambda} C(\lambda) d(\lambda)}$$
(4)

#### where: $\Phi_{c_0}$ - reflected circadian flux

The circadian efficiency factor  $a_{cv}$  [1] (5) describes the relation between circadian quantities (in this case photometric circadian quantities) and photometric quantities (in the equation denominator  $\Phi$  signifies luminous flux).

$$a_{cv} = \frac{\Phi_c}{\Phi} = \frac{K_m \int \Phi_{e\lambda} C(\lambda) d(\lambda)}{K_m \int \Phi_{e\lambda} V(\lambda) d(\lambda)}$$
(5)

Between circadian radiometric quantities  $X_{ec}$  (circadian flux shall be then expressed in the effective Watts [W<sub>ef</sub>]) and photometric circadian quantities  $X_c$  there proceeds the relation (6).

$$X_{ec} = \frac{X_c}{K_m} \tag{6}$$

# 3. CALCULATION OF THE CIRCADIAN ILLUMINANCE DISTRIBUTION USING RADIANCE

Calculating the circadian illuminance distribution inside interiors is connected with the necessity to consider the flux interreflections between surfaces composing the interior. In

case there shall be applied selective materials with photometric properties being the wavelength function, it is necessary to make calculations including the spectral quantities within the visible range of the electromagnetic radiation, i.e. the spectral distribution of lamp radiant flux and spectral reflectance coefficients.

There have been made the exemplary calculations with use of the backward ray tracing method [5], using the *rtrace* programme, from Radiance system [5] that performs the tracing process by indicating rays crossing points with surfaces in the space. The visible range of the electromagnetic radiation has been divided into nine sections  $\Delta\lambda$ . For these sections, there have been calculated quantities of the relative spectral luminous efficiency V( $\Delta\lambda$ ) and relative spectral circadian efficiency C( $\Delta\lambda$ ) (Table 1).

| Lp | Δλ [nm]  | Section | $V(\Delta\lambda)$ | <b>C</b> (Δλ) |
|----|----------|---------|--------------------|---------------|
| 1  | 380– 415 | B3      | 0.000441           | 0.076750      |
| 2  | 415– 455 | B2      | 0.019150           | 0.793000      |
| 3  | 455– 495 | B1      | 0.124505           | 0.916500      |
| 4  | 495– 535 | G3      | 0.599500           | 0.450500      |
| 5  | 535– 575 | G2      | 0.973988           | 0.068000      |
| 6  | 575– 625 | G1      | 0.628400           | 0.001400      |
| 7  | 625– 675 | R3      | 0.128000           | 0.000000      |
| 8  | 675– 725 | R2      | 0.006490           | 0.000000      |
| 9  | 725– 780 | R1      | 0.000166           | 0.000000      |
|    |          |         |                    |               |

Table 1. The nine sections within the visible electromagnetic radiation range that have been considered for the purpose of making calculations.

There have been calculated the spectral irradiation intensity distributions  $E_{e\lambda}$ , and on their basis (by replacing integration with summation) there have been calculated the illuminance distribution E and circadian illuminance distribution  $E_C$  (2). Calculations have been made for the rectangular room configuration having the following dimensions: length 6m, width 4 m and height 3.2 m (Fig. 2).



Fig. 2. The room model for which calculations have been made.

At the height h=2.5 m there have been distributed two luminaires with fluorescent lamps Lumilux 58W/21-840, 5200 lm and for the next example Lumilux Skywhite 58W 4900 lm (when making calculation, there have been taken into consideration the fluorescent lamps spectral distribution, Fig. 3). The circadian efficiency factor  $a_{cv}$  for Lumilux 58W/21-840 has got the value equal to 0.55 and for Lumilux Skywhite 58W value equal to 0.99.



Fig. 3. Spectral distribution of the fluorescent lamp Lumilux 21-840 and Lumilux Skywhite.

There have been considered two variants where once the luminaires produce light towards up (indirect lighting) and secondly towards down (direct lighting). Calculations have been made for four selective materials covering all internal surfaces (Fig. 4). There have been considered that materials are characterized by the isotropic diffuse reflection.



Fig. 4. Spectral reflectance factors of paints samples from Du Pont catalogue and coloured samples from RAL colours catalogue.

## 3.1 Radiance techniques (9X method)

Making calculations required preparing data for calculations and starting calculations in a special way.

Preparing data for calculations:

a) First step is dividing the visible range of the electromagnetic radiation into sections  $\Delta\lambda$ . For these sections, values of the relative spectral luminous efficiency V( $\Delta\lambda$ ) and relative spectral circadian efficiency C( $\Delta\lambda$ ) are calculated as average values. For the first example the visible range of the electromagnetic radiation has been divided into nine sections (see Table 1),

b) Spectral reflectance factors of materials should be calculated for all spectral sections from spectral data (Fig. 4) as average values, then reflectance factor values should be written as arguments of e.g. plastic materials for three channels:

```
void plastic material-R
0
0
5
      0.233167
                   0.263080
                                 0.286560
                                              0
                                                     0
void plastic material-G
0
0
5
      0.261800
                   0.381725
                                 0.584300
                                              Ο
                                                     0
void plastic material-B
\cap
0
5
      0.643700
                   0.597100
                                 0.294725
                                              Ο
                                                     0
```

Radiance uses three channels in one calculation process. To introduce data for nine channels it is necessary to make calculations three times. Each single process is made for different section group R, G and B (see table 1). For each single process there is introduced different file with material description and each material contains three channels:

- file with material-R: channels R1, R2 and R3 - file with material-G: channels G1, G2 and G3
- file with material-B: channels B1, B2 and B3
- c) Spectral distribution of luminaires should be calculated from spectral data of the lamps for all spectral sections. There are calculated spectral radiance of luminaires  $L_{e\lambda}$  [W m<sup>-2</sup> sr<sup>-1</sup>] from relative spectral distribution of radiant flux  $\Phi'_{e\lambda}$  of lamps (Fig. 3). To calculate spectral radiance, first is presented following equation (7):

$$I_{C,\gamma} = S'_{C,\gamma} K_m \sum_{\lambda=380nm}^{\lambda=780nm} k \Phi'_{e\lambda} V(\lambda) \Delta \lambda \quad [Im \ sr^{-1}]$$
(7)

where:

 $I_{C,\gamma}$  - luminous intensity of the luminaire in a given direction  $C,\gamma$  (the value which is known).

*S'* - projected area of luminous solid of the luminaire in direction *C*,  $\gamma$ , *K<sub>m</sub>* - maximum spectral luminous efficiency value equal to 683 [Im W<sup>-1</sup>],

 $L_{e\lambda} = k \, \Phi'_{e\lambda} \tag{8}$  where:

*k* - coefficient that should be calculated.

Products of *k* and  $\Phi'_{e\lambda}$  (for  $\lambda$  from 380 nm to 780 nm with step  $\Delta \lambda = 2$ nm, 5nm or 10nm) should give such a value of L<sub>e $\lambda$ </sub> that right part of equation (7) will be equal to known value of luminous intensity of the luminaire in a given direction  $I_{C,\gamma}$ . The best

way is made it for direction C=0,  $\gamma$ =0. It is possible to find *k* in some different ways. For example there could be used approximation method. Values of spectral radiance should be calculated for nine sections as sum of all spectral radiance L<sub>e</sub> within given section (9).

$$L_{e}^{R1} = \sum_{\lambda=725nm}^{\lambda=780nm} \Delta \lambda \qquad L_{e}^{R2} = \sum_{\lambda=675nm}^{\lambda=725nm} \Delta \lambda \qquad L_{e}^{R3} = \sum_{\lambda=625nm}^{\lambda=675nm} \Delta \lambda \qquad \text{etc...}$$
(9)

Then it is possible to prepare three files where properties of luminaire are described. There is presented one of these files luminaire-R.rad:

```
#luminaire for two SKYWHITE 58W Fi=4900lm, section group R
#luminaire distribution in luminaire.dat
void brightdata luminaire.dist
5 flatcorr luminaire.dat source.cal src theta src phi2
0
1 0.005135838
#"0.005135838" is 1/I(C=0,gamma=0),
#here I=194.7102[cd/1000lm], see luminaire.dat
luminaire.dist light lampa 100
0
0
3 0.094570 0.332746
                       0.577927
#upper are three values of spectral radiance
#here for sections R1, R2 and R3
#shape of luminaire No 1
lampa 100 polygon lampa1
0
0
12
      1.35 1.25 2.39
      1.35 2.75 2.39
      1.65 2.75 2.39
      1.65 1.25 2.39
#shape of luminaire No 2
lampa 100 polygon lampa2
0
0
12
      4.351.252.394.352.752.394.652.752.394.651.252.39
# luminaire body generation
xform -n 1 -t 1.35 1.25 2.399
genbox mat body ob 0.3 1.5 0.1
```

File luminaire.dat is as follows:

# luminaire 2x58W Skywhite, # Fi(lamps)=2x4900lm, 1.5mx0.3m, opal diffusor # Fi(luminaire)=5994.66 lm, L(luminaire)=4240.35 cd/m2 # Here are presented values of luminous intensity distribution # I [cd/1000lm] 1 180 19 Ο 194.7102 191.7506 182.9692 168.6190 149.1480 125.1597 97.3551 66.5909 33.8017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000

Starting calculations:

a) For one scene it is need to run three rtrace processes for calculation of illuminance distribution. Each process can make calculations for one section group (R, G or B).

```
oconv material-R.rad luminaire-R.rad room.rad > R.oct
oconv material-G.rad luminaire-G.rad room.rad > G.oct
oconv material-B.rad luminaire-B.rad room.rad > B.oct
rtrace @par.opt -h -I R.oct <points.txt> outR.txt
rtrace @par.opt -h -I G.oct <points.txt> outG.txt
rtrace @par.opt -h -I B.oct <points.txt> outB.txt
```

b) The next step is to join three output files using lam program:

lam outR.txt outG.txt outB.txt > out-RGB.txt

c) All previous data (prepared for calculations and obtained as results of calculation processes) are spectral data, so now we can decide what values we want to receive: photometric (luminous) or circadian. Photometric illuminance is calculated with the following process:

```
rcalc -e
'$1=0.000166*$1+0.006490*$2+0.128000*$3+0.628400*$4+0.973988*$5
+0.599500*$6+0.124505*$7+0.019150*$8+0.000441*$9' out-RGB.txt >
out-V.txt
```

circadian illuminance is calculated with the process:

```
rcalc -e
'$1=0.000000*$1+0.000000*$2+0.000000*$3+0.001400*$4+0.068000*$5
+0.450500*$6+0.916500*$7+0.793000*$8+0.076750*$9' out-RGB.txt >
out-C.txt
```

Please see that there are used for rcalc process relative spectral luminous efficiency  $V(\Delta\lambda)$  and relative spectral circadian efficiency  $C(\Delta\lambda)$  values (see table 1).

d) The last step is multiply calculated values by 683 (the maximum spectral luminous efficiency  $K_m$  [Im  $W^1$ ])

rcalc -e '\$1=683\*\$1' out-V.txt > out-EV.txt
rcalc -e '\$1=683\*\$1' out-C.txt > out-EC.txt

#### 3.2 Results

The total reflectance of luminous flux  $\rho$  and circadian flux  $\rho_C$  values that have been calculated for the spectral distribution of the Lumilux 58W/21-840 and Lumilux Skywhite 58W fluorescent lamp have been presented in the Table 2. There have been calculated values of the illuminance distribution E and circadian illuminance  $E_C$  on the floor level and on their basis there have been calculated average values  $E_{AV}$  and  $E_{C-AV}$ . There have also been calculated the illuminance  $E_V$  and circadian illuminance  $E_{C-V}$  values on the vertical plane for the observer located in the room centre and for the observation direction along the room (Table 2).

Table 2. Calculated reflectance, illuminance and circadian illuminance values.

| first val<br>Lumiluz<br>/<br>second | lue for<br>x 21-840<br>I value for  | Du Pont 72  | RAL 1015                | RAL 9003    | Du Pont 28  |  |
|-------------------------------------|-------------------------------------|-------------|-------------------------|-------------|-------------|--|
| Lumilu                              | x Skywhite                          |             |                         |             |             |  |
|                                     | ρ                                   | 0.57 / 0.51 | 0.57 / 0.51 0.69 / 0.68 |             | 0.38 / 0.41 |  |
| ρς                                  |                                     | 0.07 / 0.05 | 0.54 / 0.53             | 0.84 / 0.85 | 0.60 / 0.61 |  |
|                                     | E <sub>AV</sub> [lx]                | 214 / 178   | 259 / 234               | 490 / 464   | 75 / 81     |  |
| rect<br>ting                        | $E_{C-AV}$ [ $Ix_C$ ]               | 8 / 9       | 71 / 119                | 239 / 406   | 88 / 154    |  |
| lndi<br>ligh                        | E <sub>V</sub> [lx]                 | 200 / 166   | 243 / 219               | 475 / 451   | 64 / 70     |  |
|                                     | $E_{C-V}$ [ $Ix_C$ ]                | 7 / 8       | 64 / 107                | 232 / 394   | 81 / 141    |  |
|                                     | E <sub>AV</sub> [lx]                | 469 / 419   | 514 / 475               | 780 / 741   | 326 / 317   |  |
| ect<br>ting                         | $E_{C-AV}$ [ $Ix_C$ ]               | 139 / 233   | 194 / 328               | 384 / 651   | 212 / 364   |  |
| Dir<br>ligh                         | E <sub>V</sub> [lx]                 | 485 / 432   | 535 / 494               | 809 / 769   | 329 / 322   |  |
|                                     | E <sub>C-V</sub> [lx <sub>C</sub> ] | 133 / 221   | 201 / 339               | 398 / 675   | 220 / 378   |  |

Significant differences between illuminance  $E_{AV(V)}$  and circadian illuminance  $E_{C-AV(V)}$  values concern indirect lighting case when it is influenced by the applied materials characteristics (in particular for Du Pont 72 and Du Pont 28 materials), with a given lamp spectral distribution results in significant differences within reflectance factor values. The differences obtained for the direct lighting result mainly from differences between the fluorescent lamp luminous and circadian luminous fluxes.

To verify accuracy of proposed method the following calculations are made:

- a) Radiance method. Standard Radiance calculations for aselective (grey) materials and lamps with equal energy spectrum,
- b) 3X method. The visible range of the electromagnetic radiation divided into three sections  $\Delta\lambda$ . New values of the relative spectral luminous efficiency V( $\Delta\lambda$ ) and relative spectral circadian efficiency C( $\Delta\lambda$ ) were calculated. Materials have their spectral selective characteristics. Skywhite fluorescent lamp have non-equal energy spectrum (Fig. 3).
- c) 9X method. The visible range of the electromagnetic radiation divided into nine sections  $\Delta\lambda$  (as described above). Materials have their spectral selective characteristics. Skywhite fluorescent lamp have non-equal energy spectrum (Fig. 3).

# Results are presented in table 3.

|                     |                   |                      | Du Pont 72   |              |                |          | RAL 1015     |              |                |     |
|---------------------|-------------------|----------------------|--------------|--------------|----------------|----------|--------------|--------------|----------------|-----|
| Lumilux<br>Skywhite |                   | Radiance             | 3X<br>method | 9X<br>method | error<br>δ [%] | Radiance | 3X<br>method | 9X<br>method | error<br>δ [%] |     |
| Indirect lighting   | $E_{AV}$          | [lx]                 | 118          | 107          | 178            | -40      | 218          | 208          | 234            | -11 |
|                     | E <sub>C-A\</sub> | / [lx <sub>C</sub> ] |              | 25           | 9              | 178      |              | 114          | 119            | -4  |
|                     | Εv                | [lx]                 | 105          | 95           | 166            | -43      | 204          | 195          | 219            | -11 |
|                     | E <sub>C-V</sub>  | [lx <sub>C</sub> ]   |              | 22           | 8              | 175      |              | 104          | 107            | -3  |
| Direct lighting     | E <sub>AV</sub>   | [lx]                 | 346          | 321          | 419            | -23      | 452          | 427          | 475            | -10 |
|                     | E <sub>C-A\</sub> | / [lx <sub>C</sub> ] |              | 216          | 233            | -7       |              | 297          | 328            | -9  |
|                     | Εv                | [lx]                 | 357          | 331          | 432            | -23      | 471          | 445          | 494            | -10 |
|                     | $E_{C\text{-}V}$  | [lx <sub>C</sub> ]   |              | 209          | 221            | -5       |              | 307          | 339            | -9  |

# Table 3. Calculated illuminance values for three methods.Estimated error between 3X and 9X method.

|                     |                   |                      | RAL 9003     |              |                |          | Du Pont 28   |              |                |     |
|---------------------|-------------------|----------------------|--------------|--------------|----------------|----------|--------------|--------------|----------------|-----|
| Lumilux<br>Skywhite |                   | Radiance             | 3X<br>method | 9X<br>method | error<br>δ [%] | Radiance | 3X<br>method | 9X<br>method | error<br>δ [%] |     |
| Indirect lighting   | $E_{AV}$          | [lx]                 | 454          | 423          | 464            | -9       | 82           | 75           | 81             | -7  |
|                     | E <sub>C-A\</sub> | / [lx <sub>C</sub> ] |              | 350          | 406            | -14      |              | 86           | 154            | -44 |
|                     | Εv                | [lx]                 | 442          | 411          | 451            | -9       | 71           | 64           | 70             | -9  |
|                     | E <sub>C-V</sub>  | [lx <sub>C</sub> ]   |              | 340          | 394            | -14      |              | 76           | 141            | -46 |
| Direct lighting     | $E_{AV}$          | [lx]                 | 725          | 675          | 741            | -9       | 312          | 290          | 317            | -9  |
|                     | E <sub>C-A\</sub> | / [lx <sub>C</sub> ] |              | 563          | 651            | -14      |              | 267          | 364            | -27 |
|                     | $E_V$             | [lx]                 | 752          | 700          | 769            | -9       | 318          | 295          | 322            | -8  |
|                     | E <sub>C-V</sub>  | [lx <sub>C</sub> ]   |              | 584          | 675            | -13      |              | 275          | 378            | -27 |

There may occur high error when it is used 3X method (three sections) to calculate illuminance for spectral data, especially when spectral characteristics of materials and lamps strongly depend on wavelength.

# 4. CONCLUSIONS

Within the room lighting there must be expected significant differences between illuminance and circadian illuminance values because of differences that may concern fluxes and reflectance factors (both photometric and circadian ones). In the presented here examples, generally there have been observed the value decrease of the circadian quantities in relation to photometric ones. Calculations made with use of interreflections for the selective materials must be performed with use of spectral and not integral values [6].

# REFERENCES

- [1] Gall D.: Beleuchtungsrelevante Aspekte bei der Auswahl eines förderlichen Lampenspektrums. Teil 2: Circadiane Lichtgrößen und deren meßtechnische Ermittlung.
- [2] Brainhard G.C. i inni: Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor. Journal of Neuroscience, 21 (2001) 16, s. 6405 6412.
- [3] Thapan K.: An action Spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. Journal of Physiology 535 (2001) 1, s. 261 – 267
- [4] Kędziora W.: Skuteczność fotobiologiczna promieniowania temperaturowego. IV Konferencja Naukowo-Techniczna Zastosowanie Komputerów w Elektrotechnice, Poznań/Kiekrz 12-14 kwietnia 1999, s. 465-467.
- [5] Wandachowicz K.: Wyznaczanie rozkładu luminancji we wnętrzach z uwzględnieniem kierunkowo- rozproszonych charakterystyk odbiciowych materiałów. Praca doktorska, Politechnika Poznańska 2000.
- [6] Wandachowicz K., Hauser J.: Obliczanie rozkładu natężenia oświetlenia dla materiałów selektywnych z uwzględnieniem wielokrotnych odbić. VI Konferencja Naukowo-Techniczna Zastosowanie Komputerów w Elektrotechnice, Poznań/Kiekrz 23-25 kwietnia 2001.

# ACKNOWLEDGEMENTS

Krzysztof Wandachowicz Poznan University of Technology Institute of Industrial Electrical Engineering Piotrowo 3a, 60-965 Poznan, Poland Krzysztof.Wandachowicz@put.poznan.pl