Radiance Workshop 2006

Rendering Radiance

Animations on the GRID

Vibhor Aggarwal, Kurt Debattista, Gavin Ellis
and Alan Chalmers

University of Bristol
University of Delhi

"

High-Fidelity Rendering

m Physically-based rendering
1 Physically based quantities/materials
1 Global illumination
1 Animations

'_
Motivation

m Speedup Rendering

1 Shared computational resources

1 Radiance animations can take a long time to render
m Distributed method

1 GRID- like systems

" N
Example: Mine Tunnel Ride

m 2964 * 768 HQ
m 2 hours per frame
m 2,310 frames

Computing on GRID-like systems

m Distributively-owned multi-programmed
computing resources

m Large pool of potentially unutilised
computational resources

Many unused at certain times
m Offices
m Labs
m Clusters
m Screen-saver time

m Workload management systems

Condor
= Job queuing and monitoring

Computing on GRID-like systems

m GRID computing is a different animal from
distributed computing on a cluster

m |ssues
Dynamic change of resources
= Multt programmed/multt 8er environments

Minimise (no) control/data communication
m Deadlock Iis easy

Fault Tolerance

A first approach

m A queue of frames as jobs
Simple approach

Little implementation
= Simple script

"
First pass

Problems

m [ssues
Artefacts produced from different IC samples
Does not take advantage of coherence

Irradiance Cache

m Acceleration data structure [Ward et al. 88]
Distributed ray tracing

Accelerates rendering by an order of
magnitude

m Algorithm
Caches indirect diffuse samples

Interpolates/extrapolates from previous
samples within radius

|C — Normal Animation

/

74

/ Diffuse-only

\ Pure specular

AN
— \ _
Diffuse anc

/ //\D\Specu'ar

Diffuse onl3;

o O O O O O

IC — 2" Frame Normal /O//
/7

>/ ¥
;Ause only
2

£

\Pure specular
Diffuse anc

\O\specular

o 0 O O O O

o (o)
Mo/

Diffuse o

IC — 2nd Frame GRID //

, A‘fuse only

£

\Pure specular
Diffuse anc

\O\specular

°© 00 0

)

Diffuse only

" A
Our solution

m Two pass approach

First pass
= Shoot random rays
= Many caches
= Merge cache

Second pass
m Distribute merged cache
s Render animation frames

Second Pass

" A
First Pass

Selection of the Frames for the first pass:
m Selecting every nt frame

Total number of frames corresponds to total number of processors
m Selecting frames after parsing the view file

Weigh according to change in position and direction

" A
First Pass

Selection of the Frames for the first pass:
m Selecting every nt frame

Total number of frames corresponds to total number of processors
m Selecting frames after parsing the view file

Weigh according to change in position and direction

o
o
o
o
o

000000000000

" A
First Pass

Selection of the Frames for the first pass:
m Selecting every nt frame

Total number of frames corresponds to total number of processors
m Selecting frames after parsing the view file

Weigh according to change in position and direction

" A
First Pass

Selection of the Frames for the first pass:
m Selecting every nt frame

Total number of frames corresponds to total number of processors
m Selecting frames after parsing the view file

Weigh according to change in position and direction

"
First Pass: Sampling

m Render using pseudo random sampling
Good hierarchy

Progression

Distribution

(0,2) quasi- mandom seguence
m Render until

Time runs out

IC hit/miss ratio threshold

Progressive aspect ensures we can stop whenever
we want

(0,2) sequence hierarchy — 2

(0,2) sequence hierarchy — 4

(0,2) sequence hierarchy — 8

(0,2) sequence hierarchy — 16

" J
(0,2) sequence - Distribution

Merging the Cache

m The Irradiance cache

Merged
Shared

Irradiance
Caches

Merged
Cache

Fault Tolerance - problem

"
Fault Tolerance (WIP)

" A
Second Pass

m Same as standard method
Simplicity
s Can be used with our various guises of Radiance
m Potentially newer versions of Radiance

m |Sssues
Redo frame If not done

m Future work

Include fault tolerance at this stage
s Compromise simplicity

Fault Tolerance — Second Pass

Implementation

m First pass

Modified version of rpict
= Could have used rtrace

m Second pass
Standard Radiance rpict and variants

m Job distribution and management
Condor system

Shell scripts
= Automate Process

" J
Examples

m Kalabsha
m Art Gallery (-ab 3)
m Corridor

"

Kalabsha merged

"

Art Gallery (-ab 3) unmerged

"

Art Gallery (-ab 3) merged

" S
Timings — 100 procs

Corridor: ca. 320 frames
Merged Cache - 1hr 12 min
Unmerged Cache - 1hr 40 min

Art Gallery —ab 3: ca. 220 frames
Merged Cache — 4hr 35 min
Unmerged Cache — 5hr 7 min

Kalabsha: ca. 90 frames
Merged Cache - 31 min
Unmerged Cache - 48 min

" A
Conclusions and Future Work

m Underutilised computational resources can be
put to good use

Radiance for animations
m Faster
m Little cost

m Learnt a lot about GRID-like computation

m Future work

Design GRID ®ecific parallel rendering algorithms
m Better fault tolerance
= Minimum sharing

Thank You!

Contact:
Kurt.Debattista@bristol.ac.uk

Acknowledgments:
CG Bristol

Veronica Sundstedt for Kalabsha and Corridor
models

mailto:Kurt.Debattista@bristol.ac.uk

	Rendering Radiance Animations on the GRID
	High-Fidelity Rendering
	Motivation
	Example: Mine Tunnel Ride
	Computing on GRID-like systems
	Computing on GRID-like systems
	A first approach
	First pass
	Example
	Problems
	Irradiance Cache
	IC – Normal Animation
	IC – 2nd Frame Normal
	IC – 2nd Frame GRID
	Our solution
	First Pass
	First Pass
	First Pass
	First Pass
	First Pass: Sampling
	(0,2) sequence hierarchy – 2
	(0,2) sequence hierarchy – 4
	(0,2) sequence hierarchy – 8
	(0,2) sequence hierarchy – 16
	(0,2) sequence - Distribution
	Merging the Cache
	Fault Tolerance - problem
	Fault Tolerance (WIP)
	Second Pass
	Fault Tolerance – Second Pass
	Implementation
	Examples
	Conclusions and Future Work

