
Quality Assurance in Lighting Simulation

Using CIE report TC3.33 as a basis for a 'consumer guide' to lighting simulation tools

Michael Donn and Dan Xu

With thanks to...

- Fawaz Maamari and my colleagues in IEA SHC Task 31
 'Daylight for 21st Century'
- Research assistants:
 - Kat Bowron
 - Jake Lai
 - Marton Mazzag
 - Chris Furneaux
 - Nguyen Thanh

Buchan Group

Christchurch City Art Gallery

Stuart Ashdown

Test components of light simulation

- light source description (luminaire or daylight) and direct lighting calculations;
- light transfer through openings and window components or around obstructions; and
- inter-reflections between different types of materials with different photometric properties.

CIE TC 3.33

- To: "help lighting program users and developers assess the accuracy of lighting computer programs and to identify their weaknesses".
- a suite of test cases each highlighting a given aspect of the lighting simulation domain
- reference data based on analytical calculation and experimental measurements.
 - Analytical: theoretical scenarios that avoid uncertainties in the reference values.
 - Experimental: the scenario and the protocol are defined in a manner that minimizes the uncertainties associated with the measurements.
- A set of recommendations for reliable experimental data for validation purposes addressing.
 - choice and description of the scenarios
 - experimental protocol precautions
 - estimation of the error sources
 - presentation of the reference data.

CIE TECHNICAL REPORT

TEST CASES TO ASSESS THE ACCURACY OF LIGHTING COMPUTER PROGRAMS

April 7, 2005

1

Analytical test cases

- Sky Component under a roof glazed opening
- Sky component and external reflected component for a facade unglazed opening
- SC+ERC for a facade glazed opening
- SC+ERC for a facade unglazed opening with a continuous external horizontal mask
- SC+ERC for a facade unglazed opening with a continuous external vertical mask
- Simulation of point light sources
- Simulation of area light sources
- Luminous flux conservation
- Direct transmittance of clear glass
- light reflection over diffuse surfaces
- Diffuse reflection with internal obstructions
- Internal reflected component calculation of diffuse surface
- Component for a roof unglazed opening and the CIE general Sky types

Empirical data - CIBSE TM28 – 1C

• Room

- ceiling white acoustic tiles of reflectance 0.70+/-0.01
- floor dark brown (R=0.06+/-0.01)
- walls matt gray (R=0.52+/-0.02)
- Luminaires
 - semi-specular reflector luminaires (category 2, 600 x 600 mm square luminaires Cat. No. U1701/318 P' with three Philips New Generatior TL-18W, color 840 lamps and Phi HF-Performer, warm-start 3x18W high frequency ballast).
- The total lumen output from each luminaire:
 - Luminaire 1: 4087.7 lm
 - Luminaire 2: 4174.7 lm
 - Luminaire 3: 4135.0 lm
 - Luminaire 4: 4114.3 lm

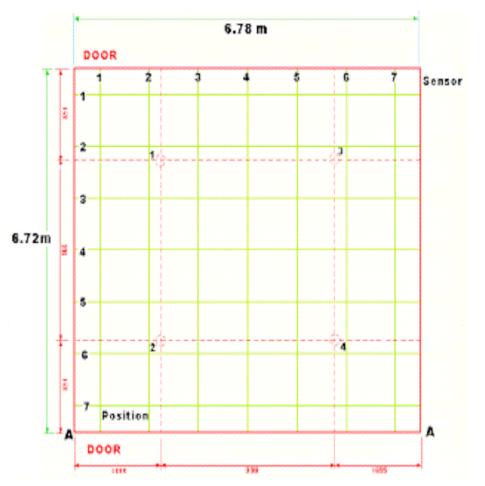
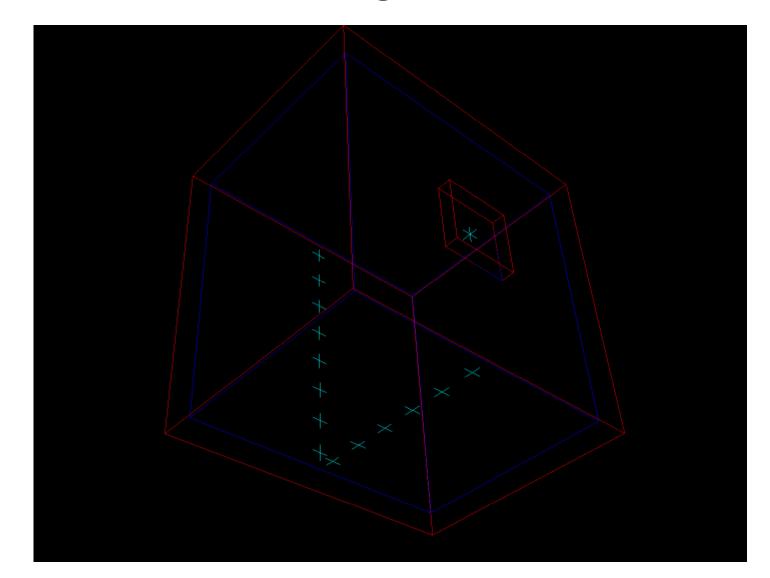
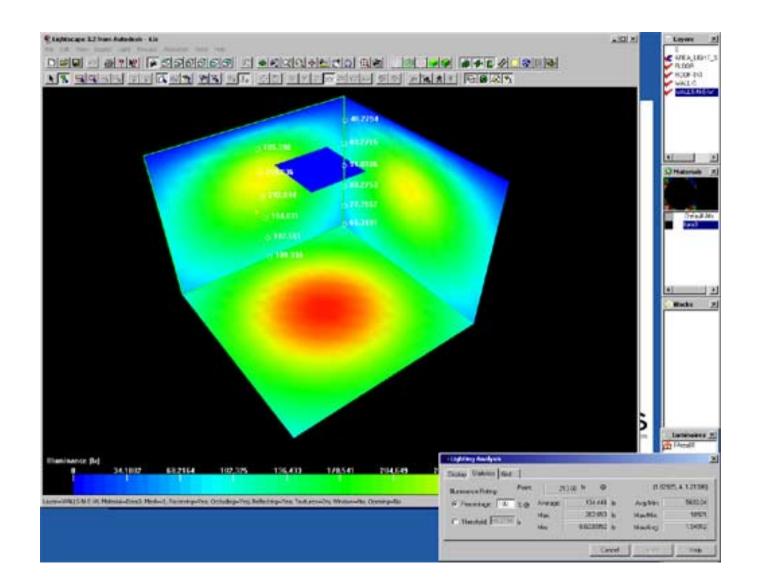
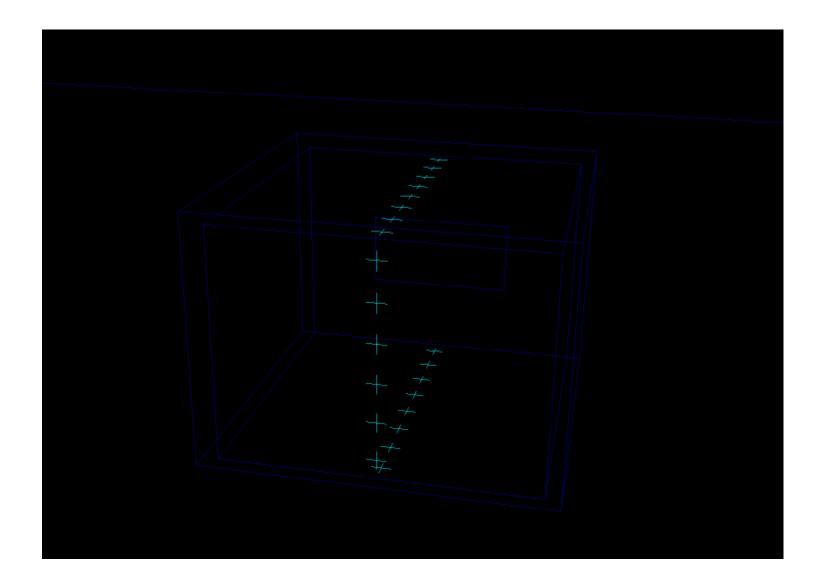
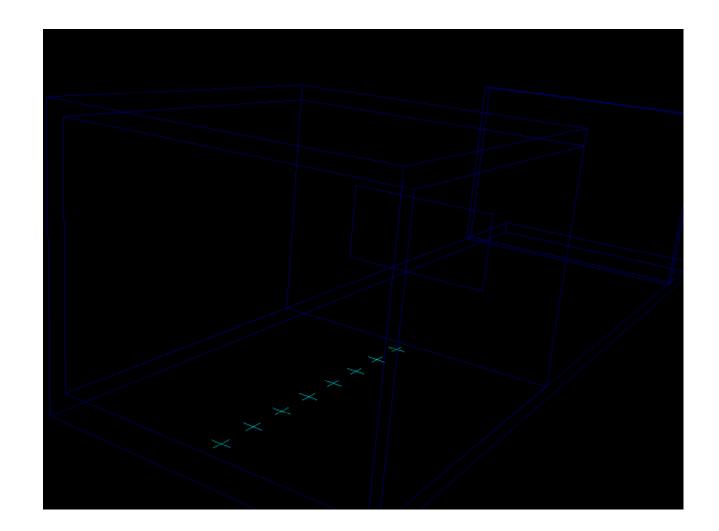



Figure 1: Plan of test room with lamp/luminaire and measurement positic


Empirical test cases

- Artificial lighting scenario CFL, grey wall
- Artificial lighting scenario opal luminaire, grey wall
- Artificial lighting scenario semi-specular reflector luminaire, grey wall
- Artificial lighting scenario CFL, black wall
- Artificial lighting scenario opal luminaire, black wall
- Artificial lighting scenario semi-specular reflector luminaire, black wall


Test cells – area light source


Test cells – area light source

Test cells – SC + ERC

Test cells - SC + ERC - obstruction

Quality Assurance?

- In simulation how do you know you have the right answer?
- If you do the simulation:
 - In visual simulation is a sight check enough (it looks the way we want it to...)
 - In numerical simulation if you know the situation well enough to be able to say it is like 'job x' in 1999, why simulate?
- If the firm's reputation depends on the simulation quality
 - How do you guarantee the grad student software expert has produced an accurate prediction of reality?
 - How accurate / precise do you need to be?

Proposal: use CIE TC3.33 as basis for QA web site

- Web site because:
 - the software tests can be routinely updated
 - because it is relatively easy to add more tests
 - so tests are not lost on a research bookshelf
- Web site enables:
 - Submission of tests by any person
 - Rate / rank significance of test by its source independent government certified lab high; grad student medium; author low.
 - E-bay style reliability rating for testers develops over time
 - Normal publication systems (reporting format standardized) but NOT refereed
 - Quality score 'guarantee' is: People who falsify evidence risk public 'outing'
 - Comparative rating of programs
 - all tests for one program, all programs for one test
 - Linked documentation of the tests
 - Full CIE document
 - Full CIBSE TM28 document
 - Other relevant information:
 - Comparison of different 'solution techniques' (radiosity / raytrace etc) Standardised time to calculate

QA – how does it work?

- If the behaviour of my model is the same as the behaviour of a test case, then I have reason to believe that I can trust my model
- Basis:
 - Trust the modeller (at web site OR in firm):
 - real building x with standard reflectivities and light source
 - Simulation model of building x behaves the same when I model it with my software (I trust my / my firm's modelling approach)
 - "Behaves the same" means when I change reflectivities or light source the change is the same
 - Start with comparing real to model to establish baseline;
 - Then develop a wider range of theoretical tests
 - Ensure that the focus is on the differences in performance
 - Eventually, software developers do the QA as a standardised report

IF QA – then also 'Consumer guide'?

- If people are looking at a web site that reports this 'accuracy' data what more might they add to make it a consumer guide?
 - Modelling
 - Modelling in the tool itself
 - Importing other geometry
 - Portability of model
 - Materials
 - Library available!
 - Customising in language that is normal in lighting
 - Mapping scaling / uvw coordinates
 - Luminaires
 - Ease of use of non-standard (ELUMDAT etc) data
 - Ease of placement / aiming of
 - Simulation
 - Setting up
 - Creating the working plane
 - Speed of calculation
 - Stability
 - Output
 - Display of illuminance / luminance
 - Image display
 - Accuracy (CIE tests)

Draft for comment

- Dan Xu BBSc (Hons) 2005 student
 - CIE TC 3.33 as consumer guide
 - Collaboration within IEA Task 31
 - Lighting paper including survey of NZ practitioners as to what they are looking for
- Completion planned for Oct 21 2005
 - Interest now is:
 - list of factors sufficient?
 - best way to present data on what each solution technique is good / not so good at

Ideas?

- Modelling

- Modelling in the tool itself
- Importing other geometry
- Portability of model
- Materials
 - Library available!
 - Customising in language that is normal in lighting
 - Mapping scaling / uvw coordinates
- Luminaires
 - Ease of use of non-standard (ELUMDAT etc) data
 - Ease of placement / aiming of
- Simulation
 - Setting up
 - Creating the working plane
 - Speed of calculation
 - Stability
- Output
 - Display of illuminance / luminance
 - Image display
- Accuracy (CIE tests)
- NOTES:
 - Sky models
 - annual simulation scripts
 - Provenance of material definitions guaranteed -
 - Real cases
 - Other validations