
Making global illumination user-friendly

Gregory J. Ward

Lawrence Berkeley Laboratory
1 Cyclotron Rd., 90-3111
Berkeley, CA 94720 USA

ABSTRACT

Global illumination researchers tend to think in terms of mesh
density and sampling frequency, and their software reflects this in its
user interface. Advanced rendering systems are rife with long com-
mand lines and parameters for tuning the sample densities, thres-
holds and other algorithm-specific variables, and the novice user is
quickly lost in a sea of possibilities. This paper details a successful
effort of making one such global illumination system usable by peo-
ple who understand their problems, even if they do not understand
the methods needed to solve them, through an assisted oracle
approach. A single program is introduced to map a small set of
intuitive control variables to the rendering commands and parameter
settings needed to produce the desired output in a reasonable time.
This new executive program then serves as the basis for a graphical
user interface that is both friendly in its appearance and reliable in
its performance. Finally, we conclude with some future directions
for improving this interface.

1. Introduction

As rendering and especially global illumination techniques advance, the number of
user-settable rendering parameters tends to increase. This is because most algo-
rithms have associated sampling rates that are not determined by any basic pro-
perty of the rendering equation, but are rather a function of the modeled environ-
ment and user requirements for output quality. Therefore, the programmer pro-
vides the user with parameters to control the calculations so that the best trade-off
between time and accuracy can be achieved for a given application.

Such flexibility may be perceived as unwanted complexity by the novice user, and
setting the parameters correctly to obtain the best result often requires an intimate
understanding of the underlying algorithms. It is little wonder that program
authors and their close associates have the most success with advanced rendering
software, since they are the only ones who can make it behave properly.

The real difficulty in global illumination is mapping a given set of algorithms to a
given problem in an efficient way. Current rendering software is a lot like a box

Greg Ward
Text Box
This paper was presented at the 1995 Eurographics Workshop on Rendering, held in Dublin, Ireland. The citation is:Ward, G., "Making Global Illumination User-Friendly," Sixth Eurographics Workshop on Rendering, Springer-Verlag, Dublin, Ireland, June 1995.

of tools, and if it is not accompanied by the requisite expertise, nothing good can
be built from it. What we need to do as system designers is empower the user by
supplying the needed expertise along with the tools so that they can build their
own house, or museum, or space station, or whatever. Other researchers have
suggested this in previous papers and the notion of anoracle has been introduced,
which is a computational agent that decides what to sample and where in a global
illumination calculation [Drettakis91].

Creating robust oracles is a very difficult problem, however, and requires that
some limited subset of "common sense" be programmed into these agents. For
example, the user may know the geometric detail contained in a model, but a sim-
ple count of polygons is usually a poor measure, since it can be thrown off by a
relatively smooth surface that is finely tesselated or a small number of polygons
all intersecting each other. If the geometric detail is important to the setting of
calculation parameters, an oracle will have trouble deciding what to do if it does
not have common sense enough to determine the real detail level.

An alternate approach is to analyze what is being computed, and find ways to
adjust the calculation automatically to some goal. In the case of synthetic images,
we must find an accuracy metric that tells us how far we have to go in our pro-
gressive calculation. This can perhaps be done for a Monte Carlo path-tracing
simulation, but we still do not have a good handle on what does and does not
matter to the user in the resulting image. The metrics we can compute, such as
RMS error, have been shown to have little correspondence to quality or correct-
ness as perceived by a human observer. Other metrics, such as those described in
[Rushmeier95], are still in the experimental stages. Even if we find and accept a
good metric for image quality, we are still left with the problem of mapping our
algorithms to progressive approaches that work well with this metric. For exam-
ple, we may find that geometric shape is very important to human observers. If
we are using progressive refinement radiosity, the geometry displayed remains
constant, while the illumination changes. No amount of iteration will improve our
polygonal model, so we end up refining along the wrong axis for a metric that is
sensitive to geometry.

In this paper, we demonstrate an assisted oracle approach, which leans on the user
to find out certain common-sense things about the model, then employs a simple
set of rules to arrive at the appropriate calculation parameters from this informa-
tion. The user is allowed general control over things such as "image quality",
which loosely translates to visual accuracy, and output resolution, but is freed
from having to understand the details of algorithms employed in the calculation.
And by relying on the user’s common sense, the oracle is freed from having to
understand basic things about the real world.

2. Basic Concepts

Although we restrict ourselves in this paper to the context of a specific rendering
system, we introduce the following concepts that may be applied readily to other
global illumination calculations.

Executive Control Program
Although toolbox systems provide the greatest flexibility, they are difficult
to learn and can be difficult to run even for the experienced user. By intro-
ducing an executive program, we simplify the most frequently used

operations by combining them into a single rendering command. Doing the
job well, however, requires setting the many parameters of the constituent
programs very carefully. Freeing the user of this burden is at least as
important as simplifying the running of the software.

Intuitive Control Variables
In order to free the user from having to think in terms of global illumination
algorithms and procedures, we must distill a set of intuitive control variables
that are both comprehensive and comprehensible. This actually turns out to
be much easier than it sounds, though we can offer no foolproof method for
mapping common-sense parameters to algorithmic ones. Such mapping
requires an expert in the particular rendering software who can code this
knowledge into a working program.

Simulation Zones
The simulation zone is a concept we introduce to isolate a specific set of
rendering parameters. A zone is a set of simulation conditions that includes
a complete scene description, a single lighting condition, and a region of
interest (usually a room or an object). Within a zone there may be multiple
views specified, but the illumination and other gross scene conditions
remain constant. (Small objects may be animated, so long as it does not
have a large effect on the lighting.) By focusing on one zone at a time, it
is possible to derive a set of reliable rendering parameters.

Graphical User Interface for Rendering
The concept of a GUI for rendering is nothing new, but the design of such
an interface usually requires much attention and many trials. We show in
this paper how a GUI can be placed on top of an executive control program
with very little thought or effort, yielding excellent results. This is because
there is a very natural correspondence between the intuitive control vari-
ables and the controls of a GUI.

The specific example we explore in this paper is a program called rad,OOOO which is a
recent addition to theRadiance lighting simulation and rendering system
[Ward94]. RadOOOO takes a small number of intuitive values and combines this infor-
mation with some gleanings from the compiled scene description to assign all of
the various parameters that control the simulation. We start by enumerating some
of these algorithmic parameters and illustrating how difficult they are for the com-
mon user to set, then show how we extracted a more intuitive set of control vari-
ables. Next, we show how easily these variables can be attached to a GUI.
Finally, we discuss the need for a diagnostic tool to troubleshoot problem images,
which we leave for future exploration.

3. RADIANCE Calculation Parameters

Table 1 shows an abbreviated list of the program parameters that control the
rendering process inRadiance,and their default values. The primary author of
this software can look at these parameters and understand what they mean and
why they are there, and by experience how to set them for various rendering situa-
tions. However, the average user looks at these with a very puzzled expression
and says, "Well, I guess I could try changing this one or that one to see what hap-
pens," and off they go.

Table 1. Rendering algorithm parameters and default values.
OO

Rendering Parameter Interpretation Default Value
OO
OO

-pj pixel jitter 0.67
-ps pixel sample 4
-pt pixel threshold 0.05
-dt direct threshold 0.05
-dc direct certainty 0.5
-dj direct jitter 0.0
-ds direct sampling 0.25
-dr direct relays 1
-dp direct pretest density 512
-sj specular jitter 1.0
-st specular threshold 0.15
-av ambient value 0.0 0.0 0.0
-ab ambient bounces 0
-aa ambient accuracy 0.2
-ar ambient resolution 32
-ad ambient divisions 128
-as ambient super-samples 0
-lr limit reflection 6
-lw limit weight 0.005

LOO

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Through no fault of their own, the users take what from the programmer’s per-
spective seems like a carefully crafted set of tools, and they start banging on
things with them. How could we expect anything different? No one has taught
them what these things mean. The manual pages are long and difficult to follow,
and the research papers explaining what is behind the command line are even
worse. People have been given the tools, but no real guidance in their applica-
tion. Even the author had to experiment at one time to learn what settings were
reasonable and which ones produced good results under specific circumstances;
this knowledge is very difficult to impart.

Another stumbling block for newRadiance users is that the software is broken
into many independent modules, following the UNIX toolbox paradigm. There is
no single user interface even on the command line, and users must learn about
many different programs before seeing their first image. There are several CAD
translators and object generator programs to assist in scene creation. There is a
program to compile the scene description, and one to render the scene into an
unfiltered image, and one to reduce the image and perform anti-aliasing, and
conversion and display programs to put the image in a common format or display
it on the monitor. Unless the user’s mind works like the programmer’s, mastering
the intricacies ofRadianceseems more tedious and painful than intuitive.

Our first goal in developing a user interface to this software is to replace the
tedium and confusion with simplicity and clarity. We do this by unifying the
operation of the software and replacing the nasty algorithm-derived parameters
with more intuitive variables based on common sense. A single command taking
a short input file (less than 1K, typically) can control the core rendering modules
of Radianceand put them into a consistent, logical interface. Next, we can put a
GUI on top of this new executive program so that the user does not even have to

think about what to type, and we can hook in other functionality that is difficult to
handle in a single command line program.

4. RAD Control Variables

The key to designing a good user-assisted oracle is finding a minimal set of intui-
tive control variables that tells us exactly what we need to know from the user in
order to run the software efficiently. The purpose is to minimize the number of
decisions the user has to make for the majority of cases. The number of control
variables must be small, and the possible values for these variables must also be
small or arbitrary. (I.e. if a value is irrelevant to the calculation, such as the out-
put file name, the user is given freedom to make arbitrary assignments. If a value
affects the calculation, however, the user may be restricted to a choice of "high,"
"medium" or "low" rather than some numeric value.) We may keep the idea of
default values around, but we want the user to feel comfortable changing these
settings at will. To arrive at appropriate variables for a good user-assisted oracle,
we must ask ourselves two questions:

1. What does the user wish to control?

2. What additional information do we require from the user to perform
the simulation?

In answer to the first question, most users want to control the time versus quality
tradeoff. They also want to control the views from which the renderings take
place, and probably the size and resolution of the output. After that, the typical
user is just not very interested in the rendering process.

Unfortunately, the oracle in radOOO is not smart enough to figure out the rest on its
own, so we still need the user to give us some additional clues to enable us to do
a good job rendering the scene in a reasonable time. Obviously, we need to know
input file name(s). RadOOOO also asks for intermediate and output file names, though
these will be assigned default values if none are given. Since we are going to
maintain a compiled version of the scene, we also need to know what other files
the scene depends on, similar to the information required by the UNIX makeOOOOO

facility.

Once the file information is settled, radOOO needs to know a little bit about the scene
geometry and lighting for the specific area being rendered, which we call azone.
It was decided early on that a given set of variable settings should apply to just
one zone, since the geometry and lighting could vary too much from inside to out-
side or even one room to another in a large model. Dividing the rendering task
into zones greatly simplifies the job of setting rendering parameters inRadiance,
which depend on geometric complexity and lighting variability.

A zone is specified by type, interior or exterior, and dimensions. RadOOOO uses a 3-
dimensional, axis-aligned box in its zone specification, though the precise boun-
daries are of little importance. The primary information derived from the zone is
a relative "scale" for rendering parameters. The scale simply tells us the distance
at which lighting ceases much to matter. This information is extracted from the
overall size of the zone plus the geometric detail as specified in a separate vari-
able. Secondarily, a zone provides a convenient mechanism for establishing
default viewpoints to get the user started looking at their environment.

Table 2. RadOOOO control variables and default values.
OO

Variable Interpretation Type Default ValueOO
OO

materials materials file(s) string -
scene scene file(s) string -
illum illum object file(s) string -
objects requisite file(s) string -
view image view(s) string X (from maximum X)
UP view up vector string - (effectively +Z)
QUALITY target image quality qualitative Low
RESOLUTION output image resolution integer 512
PICTURE output file root string input file root
OCTREE octree (compiled scene) file string input file root + .oct
AMBFILE ambient value file string -
OPTFILE options file string -
REPORT report interval and file string -
OO

ZONE region of interest string bounding cube, ext.
EXPOSURE image exposure real - (automatic)
PENUMBRAS penumbras important? boolean False
DETAIL geometric detail qualitative Medium
INDIRECT # important interreflections integer 0
VARIABILITY variation in illumination qualitative Low
oconv oconv options string -
mkillum mkillum options string -
render rendering options string -
pfilt pfilt options string -
LOO

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Four additional variables are used to assess the difficulty of the lighting calcula-
tion for the given zone. These are the lighting variability, the number of indirect
reflections, and the image exposure. Variability is a qualitative setting that indi-
cates how much light levels vary in the zone, i.e. the dynamic range of light land-
ing on surfaces. This is important for controlling the number of rays used in sam-
pling indirect lighting. A second variable tells radOOO how many diffuse reflections
are critical to the lighting of a space. If a direct lighting system is used, this is
set to 0. For an indirect fluorescent system, it is set to 1. For some daylight shelf
systems, the setting may be 2. A third variable tells radOOO what multiplier to use for
exposing the final images. This can be done automatically, but the results are
usually not as good, and radOOO uses this value also to set the "ambient level" for the
zone, which is a function of the final light levels and therefore cannot be deter-
mined in advance except for very simple, closed environments. Finally, a fourth
variable indicates whether or not rendering penumbras is important in this zone.
Turning penumbras off does not mean that area sources are treated as points; it
only means that the quality of soft shadows is less important than rendering time
in this model.

You might at this point be wondering whyrad could not somehow figure out all
this additional stuff and not bother the user about it? In principle, it could. This
is the idea behind an "oracle" as recalled in the introduction. Unfortunately, writ-
ing omniscient oracles requires the kind of common sense reasoning that is easy
for people familiar with a given environment, but difficult for computers. By the
nature of the situation being modeled, the userknows whether to expect a high

degree of variability in the lighting or a low one. Figuring this out automatically
requires actually rendering the space at some level of detail, and thus solving the
problem in order to begin. It may be possible to do this iteratively, but it is more
complicated, takes longer and the result is no more reliable than asking the user.
The question we have to ask when designing an interface is, "What can be done
for the user in a way that is more pleasant than it is aggravating?" An interface
that takes twenty minutes to come up with a default parameter setting is just plain
annoying. As it is, radOOO already derives some information from the scene files,
which may take several seconds to process if the scene has not already been com-
piled.

Table 2 shows a list of the radOOO variables, interpretation, type and default values.
Lower case variables may have multiple settings, which are usually just con-
catenated together. Upper case variables may have only one valid setting.

Variables above the horizontal division are considered user control settings. In
addition to the control of input files, views, image quality and output resolution,
the user may set intermediate and output file names.

Variables below the horizontal division are considered program help settings, i.e.
things that radOOO asks the user in order to determine what rendering parameters will
work for this environment. These are the zone, detail, variability, indirect, expo-
sure and penumbra settings we spoke of earlier. As a back door for expert users,
variables are also provided for adding or overriding options to specificRadiance
modules.

5. What Does RAD Do?

Once radOOO gets all this information, what does it do, exactly? Well, it depends on
how it is invoked, but the usual action is as follows:

1. Compute default values for unspecified variables.

2. Derive rendering and filtering module parameters.

3. Recompile scene if necessary.

4. Render and filter each view.

Steps 1 and 2 are always carried out. Step 3 usually follows, unless "no action" is
specified. Step 4 includes such subtleties as recovering aborted renderings, and
may be replaced by an interactive or batch rendering of a single view if desired.
Other options control what is printed on the standard output, if anything. (The
default is to print each command as it is executed.) There is also a "touch"
option for bringing file times up to date without actually doing anything, which is
sometimes handy for avoiding overreactions to small changes.

To give an example of using radOOO on a real rendering problem, Listing 1a shows a
typical radOOO input file, and Listing 1b shows the default values for unassigned vari-
ables as computed in Step 1. Listing 2 shows the commands executed by radOOO with
their parameters.

How was the transformation of Listing 1 into Listing 2 accomplished by rad?OOOO

Without going into detail, there are three separate procedures for Step 2,
corresponding to the three possible settings of theQUALITY variable, Low,
Medium and High. The Low procedure makes every possible compromise in

mat= iesroom.mat
scene= iesroom.rad extras.rad
scene= ceilingA.rad taskC.rad windows.rad
obj= terminal.rad typeA.rad typeAOcross.rad
ZONE= I 0 15 0 20 0 10
AMB= ver1.amb
VAR= Low
EXP= 1
QUA= Med
PEN= True
RES= 640 480
view= west -vf west.vp
view= efish -vf efish.vp

Listing 1a. Example radOOO input file, "ver1.rif".

OCTREE= ver1.oct
PICTURE= ver1
INDIRECT= 0
DETAIL= Medium

Listing 1b. Computed default values for unassigned radOOO variables.

oconv iesroom.mat iesroom.rad extras.rad ceilingA.rad taskC.rad
windows.rad> ver1.oct

rpict -vf west.vp -x 1280 -y 960 -ps 3 -pt .08 -dp 512 -ar 22 -ds .2 -dj .5
-dt .1 -dc .5 -dr 1 -sj .7 -st .1 -af ver1.amb -aa .25 -ad 196
-as 0 -av 0.5 0.5 0.5 -lr 6 -lw .002 ver1.oct> ver1Owest.raw

pfilt -1 -e 1 -r 1 -x /2 -y /2 ver1Owest.raw> ver1Owest.pic
rm -f ver1Owest.raw
rpict -vf efish.vp -x 1280 -y 960 -ps 3 -pt .08 -dp 512 -ar 22 -ds .2 -dj .5

-dt .1 -dc .5 -dr 1 -sj .7 -st .1 -af ver1.amb -aa .25 -ad 196
-as 0 -av 0.5 0.5 0.5 -lr 6 -lw .002 ver1.oct> ver1Oefish.raw

pfilt -1 -e 1 -r 1 -x /2 -y /2 ver1Oefish.raw> ver1Oefish.pic
rm -f ver1Oefish.raw

Listing 2. Radiancecommands executed by rad.OOOO

quality to achieve the fastest rendering times. This setting is best used for looking
at geometry and picking views. The Medium procedure tries to do a reasonable
job without taking too long. This setting is OK for work in progress where accu-
racy is not critical. The High procedure turns up parameters as necessary to
achieve good quality results, even if the calculation will be slow. This setting is
appropriate for presentation or publication images.

There is very little point in describing these routines in any detail, but pseudocode
for the medium quality procedure is included in the Appendix for those who are
curious. What is significant is that these three short routines embody much of the
author’s knowledge aboutRadiance rendering and what works best in a given
situation. As awkward as they may look, they are a form of expert knowledge,
and it would have been impossible to write them without years of experience

using this software. Initially, it seemed that coding this knowledge would be
impossible, but it turned out instead to be cathartic.

rpict -vf west.vp -x 1280 -y 960 -ps 2 -pt .08 -dp 1024 -ar 45 -ds .2 -dj .5
-dt .1 -dc .5 -dr 1 -sj .7 -st .1 -af ver1.amb -aa .25 -ad 196
-as 0 -av 0.5 0.5 0.5 -lr 6 -lw .002 ver1.oct> ver1Owest.raw

Listing 3. Rendering command after increasingDETAIL to "High".

It is fun to change one of the radOOO variables to see how it affects the rendering
parameters. Since entirely different procedures are used for the three quality set-
tings, changing this variable obviously has the biggest effect. Let us look instead
at what happens when we change a minor variable such as theDETAIL setting.
We will take it from the default setting of "Medium" to "High". Listing 3 shows
the first rpictOOOO command with its new options. Note how only a few of the param-
eters change: the pixel sampling density (-ps), the direct presampling density (-
dp), and the ambient resolution (-ar). It would have taken aRadianceexpert to
figure out which options to change and which to leave alone, but with rad,OOOO we
only had to know that our scene is now more detailed.

Through this kind of experimentation, it is even possible for the user to gain some
knowledge about theRadianceparameters without having to waste hours on bad
renderings.

6. Putting a Graphical User Interface on RAD

Now that we have a user-friendly command line interface, we would like to take
it one step further and provide a GUI forRadiance rendering. This turns out to
be both easy and hard. It is easy in the sense that there are nice tools for building
GUI’s such as Tcl/Tk [Ousterhout94], which do most of the work for you. It is
hard in the sense that takes about 50 Kbytes of interface code and another 50
Kbytes of help screens for an interface that manipulates about 1 Kbyte of radOOO con-
trol data. Fortunately, developing a GUI also allows us to add some functionality
that we could not include in a single command line, such as image display and
conversion. In the future, we may hook other tools to the interface as well; thus it
may serve as a central point for running the entire software suite.

The current radOOO interface, called trad,OOOO is broken into seven interactive screens,
which group functions into convenient categories. Table 3 lists the screen names,
their functions, and which radOOO variables they may modify. Figure 1 shows a typi-
cal tradOOOO screen. The mode buttons are arranged in a constant area of the interface
along the right hand side, together with HELP and QUIT buttons. A second con-
stant area along the bottom is used for messages. The rest of the interface will
change depending on which mode (screen) is selected. In the screen shown, the
user has the option of changing theZONE type and limits, theDETAIL,
INDIRECT, and VARIABILITY settings, and theEXPOSUREvalue. All of these
variables give details needed by radOOO to efficiently render a particular zone, thus
they are logically grouped together. The "Copy" and "Revert" buttons in the
lower right of the Zone screen may be used to selectively load the variables on
this screen from another radOOO input file, or to return to the original settings from
this file, respectively. These buttons are quite useful, and they appear on all of
the tradOOOO screens that affect radOOO variables.

Table 3. TradOOOO screens and functions.
OOO

Screen Function Modifies OO
OO

File Load/save Rad Input Files AllOOO

Scene Specify input files OCTREE, materi-
als, illum, scene,
objectsOOO

Zone Edit zone-related variables ZONE, DETAIL,
INDIRECT,
VARIABILITY,
EXPOSUREOOO

Views Edit views view, UP, PIC-
TURE, RESOLU-
TIONOOO

Options Edit rendering options QUALITY, PE-
NUMBRAS,
AMBFILE,
OPTFILE, RE-
PORT, oconv,
mkillum, render,
pfiltOOO

Action Start interactive or batch rendering NoneOOO

Results Display/convert/print images NoneLOOOL

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Figure 1. TradOOOO Zone screen, one of seven such screens determined by
the mode button selected on the right.

Context-sensitive help is provided through a help facility by control-clicking on
any of the tradOOOO buttons or windows. It is assumed that the user has a working
knowledge ofRadianceand especially rad,OOOO but the GUI itself can be learned very
quickly by calling on help whenever something is not understood.

7. Conclusion and Future Work

We have presented a user-friendly approach to rendering with advanced global
illumination algorithms, and demonstrated the concept of a user-assisted oracle for
setting calculation parameters. The system described works well and is accepted
by even the most skeptical users once they give it a try. Even the author of the
Radiancepackage prefers the new control program to the old manual method of
rendering via pipes and monster command lines.

Future work shall continue in two areas. First, the GUI shall be linked to addi-
tional tools, such as CAD programs and translators on the input side and analysis
tools on the output side. Second, a picture diagnostic tool shall be created to pro-
vide additional expertise in correcting problem renderings.

Even with the user-assisted oracle in rad,OOOO there are occasions when the rendering
output is less than satisfactory, and the average user may have difficulty correct-
ing such problems without deeper understanding of what can go wrong. A diag-
nostic tool would help the user to identify the nature of the problem with com-
parisons to other pictures with the same artifacts. The tool would then suggest or
implement changes to the radOOO input file to correct these problems. This returns us
to the iterative, trial and error approach we sought to avoid with our interface in
the first place, but it should only be needed in exceptional cases, and rerendering
with some intelligent changes is better than giving up or living with bad output.

Designing a good user interface to advanced rendering algorithms is not as simple
as deciding what color buttons look best. It really requires an expert to sit down
and codify the knowledge that permits him or her to create beautiful output with a
given set of tools, so that less experienced users might do the same. We have
shown that there is at least one path towards this goal. We believe there are
many others, and encourage our fellow researchers to find them.

References

[Drettakis91]
Drettakis, George, Eugene Fiume, ‘‘Structure-Directed Sampling, Recon-
struction, and Data Representation for Global Illumination,’’ Proceedings of
the Second Eurographics Workshop on Rendering, Barcelona, 13-15 May
1991.

[Ousterhout94]
Ousterhout, John,Tcl and the Tk Toolkit, Addison-Wesley Professional
Computing Series, 1994.

[Rushmeier95]
Rushmeier, Holly, G. Ward, C. Piatko, P. Sanders, B. Rust, ‘‘Comparing
Real and Synthetic Images: Some Ideas About Metrics,’’ submitted to the
Sixth Eurographics Workshop on Rendering, Dublin, Ireland, June 1995.

[Ward94]
Ward, Gregory, ‘‘The RADIANCE Lighting Simulation and Rendering Sys-
tem,’’ Computer Graphics, July 1994.

Appendix

procedure SETOMEDIUMOQUALITY OOPTIONS begin
/* set pixel sampling, direct presampling, and ambient resolution */

D = size of scene bounding cube / average dimension of ZONE
switch (DETAIL)
case LOW:

if (PENUMBRAS) then
option("-ps 4")

else
option("-ps 8")

endif
option("-dp 256 -ar %d", 8*D)
break

case MEDIUM:
if (PENUMBRAS) then

option("-ps 3")
else

option("-ps 6")
endif
option("-dp 512 -ar %d", 16*D)
break

case HIGH:
if (PENUMBRAS) then

option("-ps 2")
else

option("-ps 4")
endif
option("-dp 1024 -ar %d", 32*D)
break

endswitch
option("-pt .08") /* pixel threshold for medium quality */
if (PENUMBRAS) then /* set direct subsampling and jitter */

option("-ds .2 -dj .5")
else

option("-ds .3")
endif
option("-dt .1 -dc .5 -dr 1 -sj .7 -st .1") /*set direct and specular sampling for medium quality */
if (INDIRECT > 0) then /* set indirect bounces */

option("-ab %d", INDIRECT)
endif
if (defined(AMBFILE)) then /* set ambient file */

option("-af %s", AMBFILE)
endif
switch (VARIABILITY) /* set indirect sampling */
case LOW:

option("-aa .25 -ad 196 -as 0")
break

case MEDIUM:
option("-aa .2 -ad 400 -as 64")
break

case HIGH:
option("-aa .15 -ad 768 -as 196")
break

endswitch
A = 0.5/EXPOSURE /* set ambient value */
option("-av %f %f %f", A, A, A);
option("-lr 6 -lw .002")
if (defined(RENDER)) then /* add user-specified rendering options */

option(RENDER)
endif

end SETOMEDIUMOQUALITY OOPTIONS

