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Abstract
The perceived quality of computer graphics imagery depends on the accuracy of the rendered frames, as well
as the capabilities of the human visual system. Fully detailed, high fidelity frames still take many minutes even
hours to render on today’s computers. The human eye is physically incapable of capturing a moving scene in full
detail. We sense image detail only in a 2◦ foveal region, relying on rapid eye movements, or saccades, to jump
between points of interest. Our brain then reassembles these glimpses into a coherent, but inevitably imperfect,
visual percept of the environment. In the process, we literally lose sight of the unimportant details. In this paper, we
demonstrate how properties of the human visual system, in particular inattentional blindness, can be exploited to
accelerate the rendering of animated sequences by applying a priori knowledge of a viewer’s task focus. We show
in a controlled experimental setting how human subjects will consistently fail to notice degradations in the quality
of image details unrelated to their assigned task, even when these details fall under the viewers’ gaze. We then
build on these observations to create a perceptual rendering framework that combines predetermined task maps
with spatiotemporal contrast sensitivity to guide a progressive animation system which takes full advantage of
image-based rendering techniques. We demonstrate this framework with a Radiance ray-tracing implementation
that completes its work in a fraction of the normally required time, with few noticeable artifacts for viewers
performing the task.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
- Viewing Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Animation I.4.8
[Image Processing and Computer Vision]: Scene Analysis -Time-varying imagery

1. Introduction

One of the central goals in computer graphics is to produce
the best perceived image in the least amount of time. Ad-
vanced rendering techniques such as ray-tracing and global
illumination improve image quality, but at a commensurate
cost. In many cases, we end up spending significant effort
improving details the viewer will never notice. If we can find
a way to apply our effort selectively to the small number of
regions a viewer attends in a given scene, we can improve
the perceived quality without paying the full computational
price.

Most computer graphics serve some specific visual task
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Figure 1: Effects of a task on eye movements. Eye scans for
observers examined with different task instructions; 1. Free
viewing, 2. Remember the central painting, 3. Remember as
many objects on the table as you can, 4. Count the number
of books on the shelves.
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− telling a story, advertising a product, playing a game, or
simulating an activity such as flying. In the majority of cases,
objects relevant to the task can be identified in advance, and
the human visual system focuses its attention on these ob-
jects at the expense of other details in the scene. Figure 1
shows a rendered image for which we instructed participants
to perform a number of arbitrary tasks. The eye-tracking
scans demonstrate that subjects focus on task-related objects
and fail to attend other details in the scene. In this paper, we
show experimentally that it is possible to render scene ob-
jects not related to the task at lower resolution without the
viewer noticing any reduction in quality.

We take advantage of these findings in a computational
framework that applies high-level task information to de-
duce error visibility in each frame of a progressively ren-
dered animation. By this method, we are able to generate
high quality animated sequences at constant frame rates in a
fraction of the time normally required. A key advantage to
this technique is that it only depends on the task, not on the
viewer. Unlike the foveal detail rendering used in flight sim-
ulators, there is no need for eye-tracking or similar single-
viewer hardware to enable this technology, since attentive
viewers participating in the same task will employ similar
visual processes.

We begin with a review of previous work in perceptually-
based rendering, focusing on areas most closely related to
our technique. We then present an experimental validation of
selective rendering using a task map to control image detail.
These results are followed by a description and demonstra-
tion of our perceptual rendering framework, which extends
these ideas to incorporate a model of spatiotemporal contrast
sensitivity, enabling us to predict local error visibility. In our
implementation of this framework, we use ray-tracing and
image-based rendering to compute an animated sequence in
two minutes per frame.

2. Previous Work

Visual attention is a coordinated action involving conscious
and unconscious processes in the brain, which allow us to
find and focus on relevant information quickly and effi-
ciently. If detailed information is needed from many differ-
ent areas of the visual environment, the eye does not scan the
scene in a raster-like fashion, but jumps so that the relevant
objects fall sequentially on the fovea. These jumps are called
saccades 32.

There are two general visual attention processes, labelled
bottom-up and top-down, which determine where humans
locate their visual attention 10. The bottom-up process is
purely stimulus driven, for example, a fire in the dark, a red
apple in a green tree, or the lips and eyes of another per-
son the most mobile and expressive elements of a face. In
all these cases, the visual stimulus captures attention auto-
matically without volitional control. This is evolutionary; the
movement may be danger lurking behind a bush, or we may

need to find ripe fruit for our meal. In contrast, the top-down
process is under voluntary control, and focuses attention on
one or more objects that are relevant to the observer’s goal
when studying a scene. Such goals might include looking for
a lost child, searching for an exit, or counting the number of
books on a shelf, as shown in Figure 1.

General knowledge of the human visual system has
been used to improve the quality of the rendered im-
age 6, 8, 17, 18, 23, 24. Other research has investigated how com-
plex model detail can be reduced without any reduction
in the viewer’s perception of the models 13, 21, 25, 30. Along
these lines, Maciel and Shirley’s visual navigation system
used texture mapped primitives to represent clusters of ob-
jects to maintain high and approximately constant frame
rates 14. The application of visual attention models in com-
puter graphics has so far exploited only peripheral vision and
the bottom-up visual attention process, as we discuss below.

2.1. Peripheral Vision

Due to the fact that the human eye only processes detailed
information from a relatively small part of the visual field,
it is possible to reduce detail in the periphery without up-
setting visual processing. In numerous studies, Loschky and
McConkie 12 used an eye-linked, multiple resolution dis-
play that produces high visual resolution only in the region
to which the eyes are directed. They were able to show that
photographic images filtered with a window radius of 4.1◦
produced results statistically indistinguishable from that of
a full, high-resolution display. The display they propose
does, however, encounter the problem of updating the multi-
resolution image after an eye movement without disturbing
the visual processing. Their work has shown that the im-
age needs to be updated after an eye saccade within 5 mil-
liseconds of a fixation, otherwise the observer will detect
the change in resolution. These high update rates were only
achievable using an extremely high temporal resolution eye
tracker, and pre-storing all possible multi-resolution images
that were to be used.

In another experiment, Watson et al. 29 evaluated the ef-
fectiveness of high detail insets in head-mounted displays.
The high detail inset they used was rectangular and was al-
ways presented at the finest level of resolution. Three inset
conditions were investigated: a large inset - half the com-
plete display’s height and width, a small inset size - 30 % of
the complete display’s height and width, and no inset at all.
The level of peripheral resolution was varied at: fine resolu-
tion 320x240, medium resolution 192x144 and coarse reso-
lution 64x48. Their results showed that although observers
found their search targets faster and more accurately in a
full high resolution environment, this condition was not sig-
nificantly better than the high-resolution inset displays with
either medium or low peripheral resolutions.
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2.2. Saliency Models

Low-level saliency models determine what visual features
will involuntarily attract our attention in a scene. Visual psy-
chology researchers such as Yarbus 32, Itti and Koch 9 and
Yantis 31 showed that the visual system is highly sensitive
to features such as edges, abrupt changes in color, and sud-
den movements. This low-level visual processing has been
exploited in computer graphics by Yee et al. 33 to accelerate
animation renderings with global illumination, by applying
a model of visual attention to identify conspicuous regions.
Yee constructs a spatiotemporal error tolerance map, called
the Aleph map, from spatiotemporal contrast sensitivity and
a low-level saliency map, for each frame in an animation.
The saliency map is obtained by combining the conspicuity
maps of intensity, color, orientation and motion. The Aleph
map is then used as a guide to indicate where more render-
ing effort should be spent in computing the lighting solution,
significantly improving the computational efficiency during
animation. Subsequent work by Marmitt and Duchowski 16

showed, however, that such bottom-up visual attention mod-
els do not always predict attention regions in a reliable man-
ner.

Our rendering framework in Section 4 extends Yee’s
work, modeling task-level saliency rather than automatic vi-
sual processes, and deriving a map of error conspicuity in
place of error tolerance. This permits us to finish a frame
when errors have become invisible, or render the best pos-
sible frame in a fixed period of time optimizations Yee’s
method does not support.

2.3. Inattentional Blindness

In 1967, the Russian psychologist Yarbus recorded the fix-
ations and saccades observers made while viewing natural
objects and scenes. Observers were asked to answer a num-
ber of different questions concerning the depicted situation
in Repin’s picture “An Unexpected Visitor” 32. This resulted
in substantially different saccade patterns, each one being
easily construable as a sampling of those picture objects that
were most informative for the answering of the question, as
shown in Figure 2.

Cater et al. 1 showed that conspicuous objects in a scene
that would normally attract the viewer’s attention are ignored
if they are not relevant to the task at hand. In their exper-
iments, viewers were presented with two animations. One
was a full, high-quality rendering, while in the other, only the
pixels in visual angle of the fovea (2◦) centered around the
location of a task within the environment were rendered at
high quality. This high quality was blended to a much lower
quality in the rest of the image. They showed that when ob-
servers were performing the task within an animation, their
visual attention was fixed exclusively on the area of the task,
and they consistently failed to notice the significant differ-
ence in rendering quality between the two animations.

We have extended the work in Cater et al. 1 to be able to

distinguish between the effects of peripheral vision and inat-
tentional blindness, which is the failure of an observer to see
unattended items in a scene 15. We present our results in the
following section, where we substitute still images for the
animation to ensure that the observed effect is not merely a
result of resolution loss in the periphery, but a true exhibition
of inattentional blindness.

Figure 2: Repin’s picture was examined by subjects with dif-
ferent instructions; 1. Free viewing, 2. Judge their ages, 3.
Guess what they had been doing before the unexpected vis-
itor’s arrival, 4. Remember the clothes worn by the people,
5. Remember the position of the people and objects in the
room, 6. Estimate how long the visitor had been away 32.

3. Task Maps: Experimental Validation

In this section, we demonstrate inattentional blindness ex-
perimentally in the presence of a high-level task focus. Our
hypothesis was that viewers would not notice normally vis-
ible degradations in an image that did not affect the clarity
of the objects we instructed them to seek. The experiments
confirmed our hypothesis with a high level of certainty. An
appropriate conjunctive search was selected as the task, with
no pre-attentive cues, such as color, to differentiate the task
objects from the other objects in the scene, this prevented
any pop-out effects 26. The task chosen for this experiment
was to count the number of teapots in a computer generated
scene. For ease of experimental setup a still image was used,
however, previous work has proven that this method works
just as well for animations 1.

A pre-study was run with 10 participants to find out how
long subjects took to perform the task, this was found to be
on average 2 seconds to count the five teapots in the image. A
pilot study was then conducted to deduce the appropriate im-
age resolution to use for the main experiment. 32 participants
were shown 24 pairs of images at random, and asked if they
could distinguish a change in resolution or quality between
the two images. Each image was displayed for 2 seconds.
One image was always the High Quality image rendered at a
3072x3072 sampling resolution, whilst the other image was
one selected from images rendered at sampling resolutions
of 256x256, 512x512, 768x768, 1024x1024, 1536x1536 and
2048x2048. In half of the pairs of images, there was no
change in resolution; i.e., they saw two 3072x3072 resolu-
tion images. The results can be seen in Figure 3.
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All the participants could easily detect a quality differ-
ence with the resolutions of 256x256 through to 1024x1024
in comparison to a resolution of 3072x3072. 72% still de-
tected a quality difference between a resolution image of
1536x1536 and 3072x3072. However, it was decided that
we would use a resolution of 1024x1024 in our main study
as 100% of participants in the pilot study detected the differ-
ence.

The main study involved two models of an office scene,
the only difference being the location of items in the scene,
mainly teapots (Figure 4). Each scene was then rendered to
three different levels of resolution quality, the entire scene
at High Quality (HQ), a sampling resolution of 3072x3072
(Figure 4), the entire scene at Low Quality (LQ), a sampling
resolution of 1024x1024 (Figure 6b), and Selective Qual-
ity (SQ). The Selective Quality image was created by se-
lectively rendering the majority of the scene in low quality
(1024x1024) apart from the visual angle of the fovea (2◦)
centered on each teapot, shown by the black circles in Fig-
ure 5, which were rendered at the higher rate corresponding
to 3072x3072 sampling. The high quality images took 8.6
hours to render with full global illumination in Radiance 28

on a 1 GHz Pentium processor, whilst the images for the
low quality were rendered in half this time, and the Selective
Quality in 5.4 hours.

In the study, a total of 96 participants were considered.
Each subject saw two images, each displayed for 2 seconds.
Table 1 describes the conditions tested with 32 subjects for
the HQ/HQ condition and 16 subjects for the other condi-
tions. We know from the pilot study that all participants
should be able to detect the rendering quality difference if
given no task; i.e., they are simply looking at the images for
2 seconds. The task chosen to demonstrate the effect of inat-
tentional blindness had the subjects counting teapots located
all around the scene. There were 5 teapots in both images.
By placing the teapots all over the scene, we were able to
see whether or not having to scan the whole image, and thus
fixate on low quality as well as high quality regions, would
mean that the viewers would indeed be able to detect the
rendering quality difference. To minimize experimental bias,
the choice of which condition to run was randomized, and
for each 8 were run in the morning and 8 in the afternoon.
Subjects had a variety of experience with computer graphics,
and all exhibited normal or corrected vision in testing.

Before beginning the experiment, the subjects read a sheet
of instructions on the procedure of the particular task they
were to perform. After each participant had read the instruc-
tions, they were asked to clarify that they understood the
task. They then placed their head on a chin rest that was lo-
cated 45cm away from a 17-inch monitor. The chin rest was
located so that their eye level was approximately level with
the centre of the screen. The participants’ eyes were allowed
to adjust to the ambient lighting conditions before the exper-
iment was begun. The first image was displayed for 2 sec-

onds, then the participant stated out loud how many teapots
they saw. Following this, the second image was displayed for
2 seconds, during which the task was repeated.

Figure 3: Results from the pilot study: determining a consis-
tently detectable rendering resolution difference.

Figure 4: High Quality (HQ) image rendered with a sam-
pling resolution of 3072x3072.

On completion of the experiment, each participant was
asked to fill out a detailed questionnaire. This questionnaire
asked for some personal details including age, sex, and level
of computer graphics knowledge. The participants were then
asked detailed questions about the quality of the two images
they had seen. Finally, the subjects were shown a high qual-
ity and a low quality image side-by-side and asked which
one they saw for the first and second displayed images. This
was to confirm that participants had not simply failed to re-
member that they had noticed a quality difference, but actu-
ally could not distinguish the correct image when shown it
from a choice of two.

3.1. Results

Figure 7 shows the overall results of the experiment. Obvi-
ously, the participants did not notice any difference in the
rendering quality between the two HQ images (they were
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the same). Of interest is the fact that, apart from two cases in
the HQ/SQ conditions, the viewers performing the task con-
sistently failed to notice any difference between the HQ ren-
dered image and the SQ image. Surprisingly, nearly 20% of
the viewers in the HQ/LQ condition were so engaged in the
task that they failed to notice any difference between these
very different quality image.

Figure 5: Selective Quality (SQ) image showing the high
quality rendered circles located over the teapots.

Figure 6: Sampling resolutions: a(top left) 3072x3072
(HQ), b(top right) 1024x1024 (LQ), c(bottom left) 768x768
(LQ), d(bottom right) 512x512 (LQ)

3.2. Statistical Analysis

Statistical analysis shows where our results are significant.
The appropriate method of analysis is a “paired samples” t-
test for significance, and since each subject had a different
random selection of the images, an unrelated t-test was ap-
plied 2. By performing comparisons of the other image pair-
ings to the HQ/HQ data, we could determine whether the
results were statistically significant.

When the observers were counting teapots, the difference
between HQ/HQ and HQ/LQ counts were statistically very
significant. For a two-tailed test with the df = 62 (df is re-
lated to the number of subjects), t must be greater than or
equal to 2.0 for significance with p < 0.05 (less than 5%
chance of random occurrence). The result for the pair-wise
comparison of HQ/HQ and HQ/LQ was t = 11.6 with p <
0.05.

Figure 7: Experimental results for the two tasks: counting
the teapots vs. simply looking at the images.

Acronym Description

HQ High Quality: Entire animation rendered at a
sampling resolution of 3072x3072.

LQ Low Quality: Entire animation rendered at a
sampling resolution of 1024x1024.

SQ Selective Quality: A sampling resolution of
1024x1024 all over the image apart from the
visual angle of the fovea (2◦) centered around
each teapot, shown by the circles in Figure 5,
which are rendered to a sampling resolution of
3072x2072.

Table 1: The ordering image pairs shown in the experi-
ment were: (1)HQ/HQ, (2)HQ/LQ, (3)LQ/HQ, (4)HQ/SQ,
(5)SQ/HQ

However, if we analyze statistics on the pair-wise compar-
ison of HQ/HQ and HQ/SQ, the results are not statistically
significant the null hypothesis is retained, as t = 1.4, df = 62,
and p > 0.1. From this we can conclude that when observers
were counting teapots, the HQ/HQ images and the HQ/SQ
images produced the same result; i.e., the observers thought
they were seeing the same pair twice, with no alteration in
rendering quality. However, when the observers were simply
looking at the images without searching for teapots in the
pilot study, the result was significantly different; i.e., the ob-
servers could distinguish that they were shown two images
rendered at different qualities.

An additional experiment was run to see at what value
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the results became significantly different from the HQ res-
olution of 3072x3072. At a sampling resolution of 768x768
(Figure 6c) the results were only just significant, t = 2.9, df =
62, and p < 0.05. I.e., only 7 participants, out of the 32 peo-
ple studied, noticed the difference between the high quality
image and a selectively rendered image whilst performing
the teapot counting task. This only increased to 8 people out
of 32 when the sampling resolution was dropped again to
512x512 (Figure 6d)!

3.3. Verification with an Eye-tracker

To confirm that the attention of an observer was being fully
captured by the task of counting teapots, the experiment was
repeated using the Eyelink Eyetracking System developed
by SR Research Ltd. and manufactured by SensoMotoric In-
struments. Figure 8 shows an example of a scan path of an
observer whilst performing the counting teapots task for 2
seconds. Whilst all the observers had slightly different scan
paths across the images, they fixated both on the teapots and
on other objects as well. The vases seemed to be the most
commonly non-teapot object fixated upon, due to the fact
they were the most similar looking item in the scene to a
teapot. It could be deduced that the participants were mak-
ing fixations on non-teapot objects in the image to make sure
whether or not they were in fact a teapot, whatever the case
these fixations were not enough for the observers to distin-
guish the different quality to which they were rendered.

Figure 9 shows the perceptual difference between the se-
lective quality (SQ) and low quality (LQ) images computed
using Daly’s Visual Difference Predictor 3, 20. The recorded
eye-scan paths clearly cross, and indeed fixate, on areas of
high perceptual difference. We can therefore conclude that
the failure to distinguish the difference in rendering quality
between the teapots, selectively rendered to high quality, and
the other low quality objects, is not due purely to peripheral
vision effects. The observers are fixating on low quality ob-
jects, but because they are not relevant to the given task of
counting teapots, they fail to notice the reduction in render-
ing quality. This is inattentional blindness.

These results demonstrate that inattentional blindness,
and not just peripheral vision, may be exploited to signifi-
cantly reduce the rendered quality of a large portion of the
scene without having any significant effect on the viewer’s
perception of the scene.

4. A Perceptual Rendering Framework

By our experiments, we know that selective rendering is
cost effective for briefly viewed still images, and in fact
task focus seems to override low-level visual attention when
it comes to noticing artifacts. In the more general case of
animated imagery, we can take even greater advantage of
inattentional blindness, because we know the eye preferen-
tially tracks salient objects at the expense of other details 1.
Using Daly’s model of human contrast sensitivity for mov-
ing images 4, 5, and Yee’s insight to substitute saliency for

movement-tracking efficacy 33, we can apply our a priori
knowledge of task-level saliency to optimize the animation
process.

Figure 8: An eye scan for an observer counting the teapots.
The X’s are fixation points and the lines are the saccades.

Figure 9: Perceptual difference between SQ and LQ images
using VDP 3. Red denotes areas of high perceptual differ-
ence.

The approach we describe has a number of key advan-
tages over previous methods using low-level visual percep-
tion. First, task-level saliency is very quick to compute, as
it is derived from a short list of important objects and their
known whereabouts. Second, we have introduced a direct es-
timate of pixel error (or uncertainty), avoiding the need for
expensive image comparisons and Gabor filters as required
by other perceptually based methods 33, 18. Third, we render
animation frames progressively, enabling us to specify ex-
actly how long we are willing to wait for each image, or stop-
ping when the error has dropped below the visible threshold.
Frames are still rendered in order, but the time spent refining
the images is under our control. Our initial implementation
of this framework is suitable for quick turnaround anima-
tions at about a minute per frame, but it is our eventual goal
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to apply these methods to interactive and real-time render-
ing 22, 27.

We have designed a general framework for progressive
rendering that permits iterative frame refinement until a tar-
get accuracy or time allotment has been reached. A frame
may be refined by any desired means, including improve-
ments to resolution, anti-aliasing, level of detail, global illu-
mination, and so forth. In our demonstration system, we fo-
cus primarily on resolution refinement (i.e., samples/pixel),
but greater gains are possible by manipulating other render-
ing variables as well.

4.1. Framework

The diagram shown in Figure 10 shows an overview of our
system. The boxes represent data, and the ovals represent
processes. The inputs to the system, shown in the upper left,
are the viewer’s known task, the scene geometry, lighting,
and view, all of which are a function of time. The processes
shown outside the “Iterate” box are carried out just once for
each frame. The processes shown inside the box may be ap-
plied multiple times until the frame is considered “ready”, by
whatever criteria we set. In most cases, we call a frame ready
when we have exhausted our time allocation, but we can also
break from iteration when our error conspicuity (EC) drops
below threshold over the entire image.

Our framework is designed to be general, and our imple-
mentation is just one realization. We start by explaining the
basic methods that are applied once per frame, followed by
the interactive methods for frame refinement. This overview
pertains to any rendering algorithm one might use, from ra-
diosity to ray-tracing to multi-pass hardware rendering. The
Implementation section that follows details some of the spe-
cific techniques we used in our ray-tracing realization, and
highlights our results.

Referring to Figure 10, our high-level vision model takes
the task and geometry as input, and produces a table quanti-
fying relative object importance for this frame. We call this
the geometric entity ranking. Specifically, we derive a ta-
ble of positive real numbers, where zero represents an ob-
ject that will never be looked at, and 1 is the importance of
scene objects unrelated to the task at hand. Normally, only
task-relevant objects will be listed in this table, and their im-
portance values will typically be between 1.5 and 3, where
3 is an object that must be followed very closely in order to
complete the task.

For the first order rendering, we may use any method that
is guaranteed to finish before our time is up. From this initial
rendering, we will need an object map and depth value for
each pixel. If subsampling is applied and some pixels are
skipped, we must separately project scene objects onto a full
resolution frame buffer to obtain this map. The pixel motion
map, or image flow, is computed from the object map and our
knowledge of object and camera movement relative to the
previous frame. The object map is also logically combined

with the geometric entity ranking to obtain the task map.
This is usually accessed via a lookup into the ranking table,
and does not require actual storage in a separate buffer.

Input:
• Task

• Geometry

• Lighting

• View

High-level

Vision

Model

Geometric

Entity

Ranking

First

Order

Render

Object Map

& Motion
Lookup Task Map

Current Frame &

Error Estimate

Frame

Ready?

Output Frame

Contrast

Sensitivity

Model
Error

Conspicuity

Map

Refine Frame
No

Yes

Last Frame

Iterate

Figure 10: A framework for progressive refinement of ani-
mation frames using task-level information.

Once we have a first order rendering of our frame and
maps with the object ID, depth, motion, and task-level
saliency at each pixel, we can proceed with image refine-
ment. First, we compute the relative uncertainty in each pixel
estimate. This may be derived from our knowledge of the un-
derlying rendering algorithm, or from statistical measures of
variance in the case of stochastic methods. We thought at
first that this might pose a serious challenge, but it turns out
to be a modest requirement, for the following reason. Since
there is no point in quantifying errors that we cannot correct
for in subsequent passes, we only need to estimate the differ-
ence between what we have and what we might get after fur-
ther refinement of a pixel. For such improvements, we can
usually obtain a reasonable bound on the error. For exam-
ple, going from a calculation with a constant ambient term
to one with global illumination, the change is generally less
than the ambient value used in the first pass, times the diffuse
material color. Taking half this product is a good estimate of
the change we might see in either direction by moving to
a global illumination result. Where the rendering method is
stochastic, we can collect neighbor samples to obtain a rea-
sonable estimate of the variance in each pixel neighborhood
and use this as our error estimate 11. In either case, error es-
timation is inexpensive as it only requires local information,
plus our knowledge of the scene and the rendering algorithm
being applied.

With our current frame and error estimate in hand, we can
make a decision whether to further refine this frame, or finish
it and start the next one. This “frame ready” decision may
be based as we said on time limits or on some overall test
of frame quality. In most cases, we will make at least one
refinement pass before we move on, applying image-based
rendering (IBR) to gather useful samples from the previous
frame and add them to this one.
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In an IBR refinement pass, we use our object motion map
to correlate pixels from the previous frame with pixels from
this frame. This improves our ability to decide when and
where IBR is likely to be beneficial. We base our selection
of replacement pixels on the following heuristics:

1. The pixel pair in the two frames corresponds to the same
point on the same object, and does not lie on an object
boundary.

2. The error estimate for the previous frame’s pixel must be
less than the error estimate for the current frame’s pixel
by some set amount. (We use 15%.)

3. The previous frame’s pixel must agree with surrounding
pixels in the new frame within some tolerance. (We use a
32% relative difference.)

The first criterion prevents us from using pixels from the
wrong object or the wrong part of the same object. We test
for position correspondence by comparing the transformed
depth values, and for object boundaries by looking at neigh-
boring pixels above, below, right, and left in our object map.
The second criterion prevents us from degrading our current
frame estimate with unworthy prior pixels. The third crite-
rion reduces pollution in shadows and highlights that have
moved between frames, though it also limits the number of
IBR pixels we take in highly textured regions. If a pixel from
the previous frame passes these three tests, we overwrite the
current pixel estimate with the previous one, and reset the
error to the previous value degraded by the amount used for
the second criterion. In this way, IBR pixels are automati-
cally retired as we move from one frame to the next.

Let us assume there is time for further refinement. Once
we have transferred what samples we can using IBR, we de-
termine which pixels have noticeable, or conspicuous, er-
rors so we may select these for improvement. Here we com-
bine the spatiotemporal contrast sensitivity function (CSF)
defined by Daly 4, 5 with our task-level saliency map. Daly’s
CSF model is a function of two variables, spatial frequency,
ρ, and retinal velocity, vR:

CSF(ρ,vR) = k · c0 · c2 · vR · (c12πρ)2exp(−c14πρ
ρmax

) (1)

where:
k = 6.1+7.3| log(c2vR/3)|3
ρmax = 45.9/(c2vR +2)
c0 = 1.14,c1 = 0.67,c2 = 1.7 for CRT at 100cd/m2

Following Yee 33, we substitute saliency for movement-
tracking efficacy, based on the assumption that the viewer
pays proportionally more attention to task-relevant ob-
jects in their view. The equation for retinal image velocity
(in◦/second) thus becomes:

vR = |v1 −min(v1 ·S/Smax + vmin,vmax)| (2)

where:
v1 = local pixel velocity (from motion map)

S = task-level saliency for this region
Smax = max. saliency in this frame, but not less than

1/0.82
vmin = 0.15◦/sec (eye drift velocity)
vmax = 80◦/sec (movement-tracking limit)

The eye’s movement tracking efficacy is computed as
S/Smax, which assumes the viewer tracks the most salient
object in view perfectly. Daly 5 recommends an overall value
of 82% for the average efficacy when tracking all objects in a
scene at once, so we do not allow Smax to drop below 1/0.82.
This prevents us from predicting perfect tracking over the
whole image when no task-related objects are in view.

Since peak contrast sensitivity shifts towards lower fre-
quencies as retinal velocity increases, objects that the viewer
is not tracking because they are not important will be visible
at lower resolution than our task-relevant objects. However,
if the entire image is still or moving at the same rate, the
computed CSF will be unaffected by our task information.
Because of this, we reintroduce our task map as an addi-
tional multiplier in the final error conspicuity map, which
we define as:

EC = S ·max(E ·CSF/ND−1,0) (3)

where:
E =relative error estimate for this pixel
ND = noticeable difference threshold

Because the relative error multiplied by the CSF yields
the normalized contrast, where 1.0 is just noticeable, we in-
troduce a threshold difference value, ND, below which we
deem errors to be insignificant. A value of 2 JNDs is the
threshold where 94% of viewers are predicted to notice a
difference, and this is the value commonly chosen for ND.

To compute the CSF, we also need an estimate of the peak
stimulus spatial frequency, ρ. We obtain this by evaluating
an image pyramid. Unlike previous applications of the CSF
to rendering, we are not comparing two images, so we do not
need to determine the relative spatial frequencies in a differ-
ence image. We only need to know the uncertainty in each
frequency band to bound the visible difference between our
current estimate and the correct image. This turns out to be
a great time-saver, as it is the evaluation of Gabor filters that
usually takes longest in other approaches. Because the CSF
falls off rapidly below spatial frequencies corresponding to
the foveal diameter of 2◦, and statistical accuracy improves
at lower frequencies as well, we need only compute our im-
age pyramid up to a ρ of 0.5 cycles/degree.

Our procedure is as follows. We start by clearing our EC
map, and subdividing our image into 2◦ square cells. Within
each cell, we call a recursive function that descends a local
image pyramid to the pixel level, computing EC values and
summing them into our map on the return trip. At each pyra-
mid level, the EC function is evaluated from the stimulus
frequency (1/subcell radius in ◦), the task-level saliency, the
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combined error estimate, and the average motion for pixels
within that subcell. The task-level saliency for a subcell is
determined as the maximum of all saliency values within a
2◦ neighborhood. This may be computed very quickly us-
ing a 4-neighbor check at the pixel level, where each pixel
finds the maximum saliency of itself and its neighbors 1◦ up,
down, left, and right. The saliency maximum and statistical
error sums are then passed back up the call tree for the return
evaluation. The entire EC map computation, including a sta-
tistical estimation of relative error, takes less than a second
for a 640x480 image on a 1 GHz Pentium processor.

5. Implementation

In our implementation of the above framework, we modified
the Radiance lighting simulation and rendering engine 28

to perform progressive animation. Figure 11 shows a frame
from a 4-minute long animation we computed at 640x480
resolution using this software. Figure 12a shows our esti-
mate of relative error at each pixel in the first order ren-
dering, and Figure 12b shows the corresponding error con-
spicuity map. The viewer was assigned the task of counting
certain objects in the scene related to fire safety. There are
two task objects visible in this image, the fire extinguisher
and the narrator’s copter (the checkered ball), so the regions
around these objects show strongly in the conspicuity map.
Figure 13a shows the final number of samples taken at each
pixel in the refined frame, which took two minutes to com-
pute on a single 400 MHz G3 processor. We found this time
sufficient to render details on the task-related objects, but too
short to render the entire frame accurately. We wanted there
to be artifacts in order to demonstrate the effect of task focus
on viewer perception. About 50% of the pixels received IBR
samples from the previous frame, and 20% received one or
more high quality refinement samples.

For comparison, Figure 13b shows the scene rendered as a
still image in the same amount of time. Both images contain
artifacts, but the animation frame contains fewer sampling
errors on the task-related objects. In particular, the fire ex-
tinguisher in the corner, which is one of the search objects,
has better anti-aliasing than the traditionally rendered im-
age. This is at the expense of some detail on other parts of
the scene, such as the hatch door. Since the view is mov-
ing down the corridor, all objects will be in motion, and we
assume the viewer will be tracking the task-related objects
more than the others. Rendering the entire frame to the same
detail as the task objects in Figure 11 takes 7 times longer
than our optimized method. Although direct comparisons are
difficult due to differences in the rendering aims, Yee et al.
demonstrated a 4-10 times speedup in 33 and Myszkowski
et al. showed a speedup of roughly 3.5 times in 19. This
shows that we are able to achieve similar speedups control-
ling only rendered sampling resolution. If we were to refine
the global illumination calculation also, similar to Yee, we
could achieve even greater gains.

There are only a few aspects of our framework that we

must tailor to a ray-tracing approach. Initially, we compute a
low quality, first order rendering from a quincunx sampling
of the image plane, where one out of every 16 pixels is sam-
pled. (This sampling pattern is visible in unrefined regions of
Figure 13a.) To obtain the object and depth maps at unsam-
pled locations, we cast rays to determine the first intersected
object at these pixels. We then estimate our rendering error
by finding the 5 nearest samples to each pixel position, and
computing their standard deviation. This is a very crude ap-
proximation, but it suited our purposes well. In cases where
the high-quality samples in the refinement pass have an in-
terreflection calculation that the initial samples do not, we
use the method described earlier for estimating the error due
to a constant ambient term.

Following the IBR refinement described in the previous
section, and provided we are not out of time, we then com-
pute the error conspicuity map, sorting our pixels from most
to least conspicuous. For pixels whose EC value are equal
(usually 0), we order from highest to lowest error, then from
fewest to most samples. Going down this list, we add one
high-quality ray sample to each pixel, until we have sam-
pled them all or run out of time. If we manage to get through
the whole list, we recompute the error conspicuity map and
re-sort. This time, we only add samples to the top 1/8th of
our list before sorting again. We find we get smoother ani-
mations by sampling each pixel at least once before honing
in on the regions we deem to be conspicuous. We could insist
on sampling every pixel in our first order rendering, but this
is sometimes impossible due to time constraints. Therefore,
we incorporate it in our refinement phase, instead.

Figure 11: A frame from our task-based animation.

Prior to frame output, we perform a final filtering stage to
interpolate unsampled pixels and add motion blur. Pixels that
did not receive samples in the first order rendering or subse-
quent refinements must be given a value prior to output. We
apply a Gaussian filter kernel whose support corresponds to
our initial sample density to arrive at a weighted average
of the 4 closest neighbors. Once we have a value at each
pixel, we multiply the object motion map by a user-specified
blur parameter, corresponding to the fraction of a frame time
the virtual camera’s shutter is open. The blur vector at each
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pixel is then applied using an energy-preserving smear filter
to arrive at the final output image. This technique is crude
in the sense that it linearizes motion and does not discover
obstructed geometry, but we have not found this to be objec-
tionable in any of our tests. However, the lack of motion blur
on shadows does show up as one of the few distracting arti-
facts in our implementation. This filtering operations take a
small fraction of a CPU second per video resolution frame,
and are inconsequential to the overall rendering time.

Figure 12: a(left) Initial frame error, b(right) Initial error
conspicuity.

Figure 13: a(left) Final frame samples, b(right) Standard
rendering taking same time as Figure 11.

Of our two minute rendering time for the frame shown
in Figure 11, 1 second is spent updating the scene struc-
tures, 25 seconds is spent computing the 19,200 initial sam-
ples and the object map, 0.25 seconds is spent on IBR ex-
trapolation, 0.9 seconds to compute the error map (times
three evaluations), 1.25 seconds for the EC map, 0.4 sec-
onds for filtering, and the remaining 90 seconds to compute
about 110,000 high quality refinement samples. In this test,
the Radiance rendering parameters were set so there was lit-
tle computational difference between an initial sample and a
high-quality refinement sample; we did not evaluate diffuse
interreflections for either. Our method’s combined overhead
for a 640x480 frame is thus in the order of 14 seconds, 10
of which are spent computing the object map by ray casting.
Intuitively and by our measurements, this overhead scales
linearly with the number of pixels in a frame.

It is worth noting that IBR works particularly well in
our progressive rendering framework, allowing us to achieve
constant frame generation times over a wide range of mo-
tions. When motion is small, IBR extrapolation from the pre-
vious frame provides us with many low-error samples for
our first refinement pass. When motion is great, and thus
fewer extrapolated samples are available, the eye’s inabil-
ity to track objects and the associated blur means we do not

need as many. This holds promise for realistic, real-time ren-
dering using this approach with hardware support.

6. Conclusions and Future Work

As our experiments demonstrate, inattentional blindness
may be exploited to accelerate rendering by reducing quality
in regions that are unrelated to a given task. Extending this
idea, we have designed a progressive animation framework
that combines an indexed task map with a spatiotemporal
contrast sensitivity function to determine which image ar-
eas need further refinement. Adding our knowledge of pixel
uncertainty and movement between frames, we derive an er-
ror conspicuity map, which identifies noticeable artifacts in
the presence of this task. We focus additional ray samples
in these regions, and augment our results with IBR samples
from the previous frame. We then apply the pixel movement
map again to simulate motion blur in the final output.

Much work remains. Our current implementation per-
forms poorly when subsequent refinement corrects for sys-
tematic errors in the initial estimate. This may result in no-
ticeable discontinuities in the output, which makes it difficult
to employ rendering methods that do not converge smoothly.
Some intelligent blending or error dissipation is required if
we wish to combine hardware rendering with ray-tracing,
for example. At the level of the perceptual model, we would
like to take advantage of masking effects to further reduce
sampling in busy regions 7. However, visual masking mod-
els have yet to be extended to the temporal domain, even
though we know they are affected by movement. We would
also like to find a sensible way to combine task-level infor-
mation with low-level saliency. To apply them together, we
need to know which visual processes dominate and under
what conditions. Again, additional psychophysical research
is required.

Human perception determines to a large extent what we
do in computer graphics and indeed, why we do it. It seems
fitting, therefore, that we should pay close attention to the at-
tention graphics consumers pay to us. Exploiting task-level
models of visual perception is one way to improve the view-
ing experience within a limited budget of time and resources.

Acknowledgements

This research is funded by the Engineering and Physical Sci-
ences Research Council (Award No: 00301786). We are in-
debted to Tom Troscianko, Karol Myszkowski, Hector Yee
and Scott Daly for all their help. We would also like thank
everyone who attended the experiment; we would not have
got any results if it were not for them.
References

1. K. Cater, A. Chalmers, and P. Ledda. Selective Quality
Rendering by Exploiting Human Inattentional Blind-
ness: Looking but not Seeing In Proceedings of Sympo-
sium on Virtual Reality Software and Technology 2002,
ACM. pp. 17–24. 3, 6

c© The Eurographics Association 2003.



Cater et al / Detail to Attention

2. H. Coolican. Research Methods and Statistics in Psy-
chology. Hodder and Stoughton Educational, U.K.,
1999. 5

3. S. Daly. The Visible Differences Predictor: an algo-
rithm for the assessment of image fidelity. In A.B.
Watson, editor, Digital Image and Human Vision, 1993,
Cambridge, MA: MIT Press, pp. 179–206. 6

4. S. Daly. Engineering observations from spatiovelocity
and spatiotemporal visual models. In IS and T/SPIE
Conference on Human Vision and Electronic Imaging
III, 1998, SPIE Proceedings Vol. 3299, pp. 180–193. 6,
8

5. S. Daly. Engineering observations from spatioveloc-
ity and spatiotemporal visual models. Chapter 9 in Vi-
sion Models and Applications to Image and Video Pro-
cessing, 2001, ed. C. J. van den Branden Lambrecht,
Kluwer Academic Publishers. 6, 8

6. J.A. Ferwerda, S.N. Pattanaik, P.S. Shirley, and D.P.
Greenberg. A Model of Visual Adaptation for Real-
istic Image Synthesis. In Proceedings of SIGGRAPH
1996, ACM Press / ACM SIGGRAPH, New York. H.
Rushmeier, Ed., Computer Graphics Proceedings, An-
nual Conference Series, ACM, pp. 249–258. 2

7. J.A. Ferwerda, S.N. Pattanaik, P.S. Shirley, and D.P.
Greenberg. A Model of Visual Masking for Computer
Graphics. In Proceedings of SIGGRAPH 1997, ACM
Press / ACM SIGGRAPH, New York. T. Whitted, Ed.,
Computer Graphics Proceedings, Annual Conference
Series, ACM, pp. 143–152. 10

8. D.P. Greenberg, K.E. Torrance, P.S. Shirley, J. Arvo,
J.A. Ferwerda, S.N. Pattanaik, A.E. Lafortune, B.
Walter S-C. Foo and B. Trumbore. A Frame-
work for Realistic Image Synthesis. In Proceedings
of SIGGRAPH 1997,(special session), ACM Press /
ACM SIGGRAPH, New York. T. Whitted, Ed., Com-
puter Graphics Proceedings, Annual Conference Series,
ACM, pp. 477–494. 2

9. L. Itti and C. Koch. A saliency-based search mecha-
nism for overt and covert shifts of visual attention. In
Vision Research, 2000, Vol. 40, No. 10-12, pp. 1489–
1506. 3

10. W. James A saliency-based search mechanism for overt
and covert shifts of visual attention. Principles of Psy-
chology, New York: Holt. 2

11. M. Lee, R. Redner and S. Uselton. Statistically Opti-
mized Sampling for Distributed Ray Tracing. In Pro-
ceedings of SIGGRAPH 1985, ACM Press / ACM SIG-
GRAPH, New York. Computer Graphics Proceedings,
Annual Conference Series, ACM, Vol. 19, No. 3. 7

12. L.C. Loschky, G.W. McConkie, J. Yang and M.E.

Miller. Perceptual Effects of a Gaze-Contingent Multi-
Resolution Display Based on a Model of Visual Sen-
sitivity. ARL Federated Laboratory Advanced Dis-
plays and Interactive Displays Consortium, Advanced
Displays and Interactive Displays Fifth Annual Sympo-
sium, 2001, pp. 53–58. 2

13. D. Luebke and B. Hallen. Perceptually driven simplifi-
cation for interactive rendering. In Proceedings of 12th
Eurographics Workshop on Rendering, 2001, pp. 221–
223. 2

14. P.W.C Maciel and P. Shirley. Visual Navigation of
Large Environments Using Textured Clusters. In Pro-
ceedings of Symposium on Interactive 3D Graphics,
1995, pp. 95–102. 2

15. A. Mack and I. Rock. Inattentional Blindness. In Pro-
ceedings of Symposium on Interactive 3D Graphics,
Massachusetts Institute of Technology Press, 1998. 3

16. G. Marmitt and A.T. Duchowski Modeling Visual At-
tention in VR: Measuring the Accuracy of Predicted
Scanpaths. Eurographics 2002, Short Presentations, pp.
217–226. 3

17. A. McNamara, A.G. Chalmers, T. Troscianko and I.
Gilchrist. Comparing Real and Synthetic Scenes using
Human Judgements of Lightness. In 12th Eurographics
Workshop on Rendering 2000, B Peroche and H Rush-
meier (eds), pp. 207–219. 2

18. K. Myszkowski, T. Tawara, H. Akamine and H-P. Sei-
del. Perception-Guided Global Illumination Solution
for Animation Rendering. In Proceedings of SIG-
GRAPH 2001, ACM Press / ACM SIGGRAPH, New
York. E. Fiume, Ed., Computer Graphics Proceedings,
Annual Conference Series, ACM, pp. 221–230. 2, 6

19. K. Myszkowski, R. Przemyslaw and T. Tawara.
Perceptually-informed Accelerated Rendering of High
Quality Walkthrough Sequences. In proceedings of the
Eurographics Workshop on Rendering 1999, G.W. Lar-
son and D. Lischinksi, Eds., pp. 13–26. 9

20. K. Myszkowski. The Visible Differences Predictor: Ap-
plications to global illumination problems. In proceed-
ings of the Eurographics Workshop on Rendering 1998,
G. Drettakis and N. Max, Eds., pp. 223–236. 6

21. C. O’Sullivan, J. Dingliana, G. Bradshaw, and A. Mc-
Namara. Eye-tracking for Interactive Computer Graph-
ics. In proceedings of the 11th European Conference
on Eye Movements (ECEM 11), 2001, Turku, Finland.
2

22. S. Parker, W. Martin, P-P. Sloan, P. Shirley, B. Smits,
and C. Hansen. Interactive ray tracing. In Symposium
on Interactive 3D Graphics, 1999, ACM, pp. 119–126.
7

c© The Eurographics Association 2003.



Cater et al / Detail to Attention

23. S.N. Pattanaik, J.A. Ferwerda, M.D. and D.P. Green-
berg. A Multiscale Model of Adaptation and Spatial
Vision for Realistic Image Display. In Proceedings
of SIGGRAPH 1998, ACM Press / ACM SIGGRAPH,
New York. M. Cohen, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, pp. 287–
298. 2

24. M. Ramasubramanian, S.N. Pattanaik, and D.P. Green-
berg. A Perceptually Based Physical Error Metric for
Realistic Image Synthesis. In Proceedings of SIG-
GRAPH 1999, ACM Press / ACM SIGGRAPH, New
York. A. Rockwood, Ed., Computer Graphics Proceed-
ings, Annual Conference Series, ACM, pp. 73–82. 2

25. M. Reddy. Perceptually Modulated Level of Detail
for Virtual Environments. Ph.D. Thesis (CST- 134-97),
University of Edinburgh, 1997. 2

26. A. Treisman and J. Souther. Search asymmetry: A diag-
nostic for preattentive processing of separable features.
In Journal of Experimental Psychology: General, 1985,
114 (3), pp. 285–310. 3

27. I. Wald, T. Kollig, C. Benthin, A. Keller and P.
Slusallek. Interactive global illumination using fast
ray tracing. In proceedings of the 13th Eurograph-
ics Workshop on Rendering 2002, S.J. Gortler and K.
Myszkowski, Eds., Springer-Verlag, pp. 9–19. 7

28. G. Ward. The RADIANCE Lighting Simulation and
Rendering System. In Proceedings of SIGGRAPH
1994, ACM Press / ACM SIGGRAPH, New York,
Computer Graphics Proceedings, Annual Conference
Series, ACM, pp. 459–472. 4, 9

29. B. Watson, A. Friedman and A. McGaffey. An evalu-
ation of Level of Detail Degradation in Head-Mounted
Display Peripheries. In Presence, 6, 6, pp. 630–637. 2

30. B. Watson, A. Friedman and A. McGaffey. Measuring
and Predicting Visual Fidelity. In Proceedings of SIG-
GRAPH 2001, ACM Press / ACM SIGGRAPH, New
York, E. Fiume, Ed., Computer Graphics Proceedings,
Annual Conference Series, ACM, pp. 213–220. 2

31. S. Yantis. Attentional capture in vision. In Converging
operations in the study of selective visual attention,A.
Kramer, M. Coles and G. Logan (eds), American Psy-
chological Association, pp. 45–76. 3

32. A.L. Yarbus. Eye movements during perception of
complex objects. In Eye Movements and Vision, L.
A. Riggs, Ed., 1967, Plenum Press, New York, Chap-
ter VII, pp. 171–196. 2, 3

33. H. Yee, S. Pattanaik and D.P. Greenberg. Spatiotempo-
ral sensitivity and Visual Attention for efficient render-
ing of dynamic Environments. In ACM Transactions on
Computer Graphics, 2001, Vol. 20, No. 1, pp. 39–65. 3,
6, 8, 9

c© The Eurographics Association 2003.


