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Abstract
Accurate color rendering requires the consideration of many samples over the visible spectrum, and advanced
rendering tools developed by the research community offer multispectral sampling towards this goal. However,
for practical reasons including efficiency, white balance, and data demands, most commercial rendering packages
still employ a naive RGB model in their lighting calculations. This results in colors that are often qualitatively
different from the correct ones. In this paper, we demonstrate two independent and complementary techniques
for improving RGB rendering accuracy without impacting calculation time: spectral prefiltering and color space
selection. Spectral prefiltering is an obvious but overlooked method of preparing input colors for a conventional
RGB rendering calculation, which achieves exact results for the direct component, and very accurate results
for the interreflected component when compared with full-spectral rendering. In an empirical error analysis of
our method, we show how the choice of rendering color space also affects final image accuracy, independent of
prefiltering. Specifically, we demonstrate the merits of a particular transform that has emerged from the color
research community as the best performer in computing white point adaptation under changing illuminants: the
Sharp RGB space.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

It is well-known that the human eye perceives color in a
three-dimensional space, owing to the presence of three
types of color receptors. Early psychophysical research
demonstrated conclusively that three component values are
sufficient to represent any perceived color, and these values
may be quantified using the CIE XYZ tristimulus space20.
However, because the spectrum of light is continuous, the
interaction between illumination and materials cannot be ac-
curately simulated with only three samples. In fact, no finite
number of fixed spectral samples is guaranteed to be suffi-
cient — one can easily find pathological cases, for example,
a pure spectral source mixed with a narrow band absorber,
that require either component analysis or a ludicrous num-
ber of fixed samples to resolve. If the rendered spectrum is
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inaccurate, reducing it to a tristimulus value will usually not
hide the problem.

Besides the open question of how many spectral samples
to use, there are other practical barriers to applying full spec-
tral rendering in commercial software. First, there is the gen-
eral dearth of spectral reflectance data on which to base a
spectral simulation. This is consistent with the lack of any
kind of reflectance data for rendering. We are grateful to
the researchers who are hard at work making spectral data
available3 � 19, but the ultimate solution may be to put the nec-
essary measurement tools in the hands of people who care
about accurate color rendering. Hand-held spectrophotome-
ters exist and may be purchased for the cost of a good laser
printer, but few people apply them in a rendering context,
and to our knowledge, no commercial rendering application
takes spectrophotometer data as input.

The second practical barrier to spectral rendering is white
balance. This is actually a minor issue once you know how
to address it, but the first time you render with the correct
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source and reflectance spectra, you are likely to be disap-
pointed by the strong color cast in your output. This is due
to the change in illuminant from the simulated scene to the
viewing condition, and there is a well-known method to cor-
rect for this, which we will cover in Section 2.

The third practical barrier to the widespread acceptance of
spectral rendering is what we call the “data mixing problem.”
What if the user goes to the trouble of acquiring spectral re-
flectances for a set of surfaces, but they also want to include
materials that are characterized in terms of RGB color, or
light sources that are specified to a different spectral reso-
lution? One may interpolate and extrapolate to some extent,
but in the end, it may be necessary to either synthesize a
spectrum from RGB triples a la Smits’ method14, or reduce
all the spectral data to RGB values and fall back on three
component rendering again.

The fourth practical barrier to full spectral rendering is
cost. In many renderings, shading calculations dominate the
computation, even in RGB. If all of these calculations must
be carried out at the maximum spectral resolution of the in-
put, the added cost may not be worth the added benefit.

Many researchers in computer graphics and color science
have addressed the problem of efficient spectral sampling8 � 7.
Meyer suggested a point-sampling method based on Gaus-
sian quadrature and a preferred color space, which requires
only 4 spectral samples and is thus very efficient11. Like
other point sampling techniques, however, Meyer’s method
is prone to problems when the source spectrum has signifi-
cant spikes in it, as in the case of common fluorescent light-
ing. A more sophisticated approach employing orthonormal
basis functions was presented by Peercy, who uses character-
istic vector analysis on combinations of light source and re-
flectance spectra to find an optimal, orthonormal basis set13.
Peercy’s method has the advantage of handling spiked and
smooth spectra with equal efficiency, and he demonstrated
accurate results with as few as three orthonormal bases. The
additional cost is comparable to spectral sampling, replac-
ing N multiplies in an N-sample spectral model with M � M
multiplies in an M-basis vector model. Examples in his pa-
per showed the method significantly out-performing uniform
spectral sampling for the same number of operations. The
cost for a 3-basis simulation, the minimum for acceptable
accuracy in Peercy’s technique, is roughly three times that
of a standard RGB shading calculation.

In this paper, we present a method that has the same over-
all accuracy as Peercy’s technique, but without the compu-
tational overhead. In fact, no modification at all is required
to a conventional RGB rendering engine, which multiplies
and sums its three color components separately throughout
the calculation. Our method is not subject to point sampling
problems in spiked source or absorption spectra, and the use
of an RGB rendering space all but eliminates the data mix-
ing problem mentioned earlier. White adaptation is also ac-
counted for by our technique, since we ask the user to iden-

tify a dominant source spectrum for their scene. This avoids
the dreaded color cast in the final image.

We start with a few simple observations:

1. The direct lighting component is the first order in any ren-
dering calculation, and its accuracy determines the accu-
racy of what follows.

2. Most scenes contain a single dominant illuminant; there
may be many light sources, but they tend to all have the
same spectral power distribution, and spectrally differen-
tiated sources make a negligible contribution to illumina-
tion.

3. Exceptional scenes, where spectrally distinct sources
make roughly equal contributions, cannot be “white bal-
anced,” and will look wrong no matter how accurately the
colors are simulated. We can be satisfied if our color ac-
curacy is no worse on average than standard methods in
the mixed illuminant case.

The spectral prefiltering method we propose is quite sim-
ple. We apply a standard CIE formula to compute the re-
flected XYZ color of each surface under the dominant illu-
minant, then transform this to a white-balanced RGB color
space for rendering and display. The dominant sources are
then replaced by white sources of equal intensity, and other
source colors are modified to account for this adaptation. By
construction, the renderer gets the exact answer for the dom-
inant direct component, and a reasonably close approxima-
tion for other sources and higher order components.

The accuracy of indirect contributions and spectrally dis-
tinct illumination will depend on the sources, materials, and
geometry in the scene, as well as the color space chosen for
rendering. We show by empirical example how a sharpened
RGB color space seems to perform particularly well in sim-
ulation, and offer some speculation as to why this might be
the case.

Section 2 details the equations and steps needed for spec-
tral filtering and white point adjustment. Section 3 shows
an example scene with three combinations of two spectrally
distinct light sources, and we compare the color accuracy of
naive RGB rendering to our prefiltering approach, each mea-
sured against a full spectral reference solution. We also look
at three different color spaces for rendering: CIE XYZ, linear
sRGB, and the Sharp RGB space. Finally, we conclude with
a summary discussion and suggestions for future work.

2. Method

The spectral prefiltering method we propose is a straightfor-
ward transformation from measured source and reflectance
spectra to three separate color channels for rendering. These
input colors are then used in a conventional rendering pro-
cess, followed by a final transformation into the display RGB
space. Chromatic adaptation (i.e., white balancing) may take
place either before or after rendering, as a matter of conve-
nience and efficiency.
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2.1. Color Transformation

Given a source I
�
λ � and a material ρm

�
λ � with arbitrary

spectral distributions, the CIE describes a standard method
for deriving a tristimulus value that quantifies the average
person’s color response. The XYZ tristimulus color space is
computed from the CIE “standard observer” response func-
tions, x̄, ȳ, and z̄, which are integrated with an arbitrary
source illuminant spectrum and surface reflectance spectrum
as shown in Eq. (1), below:

Xm � � I
�
λ � ρm

�
λ � x̄

�
λ � dλ

Ym � � I
�
λ � ρm

�
λ � ȳ

�
λ � dλ (1)

Zm � � I
�
λ � ρm

�
λ � z̄

�
λ � dλ

For most applications, the 1971 2 � standard observer curves
are used, and these may be found in Wyszecki and Stiles20.

Eq. (1) is very useful for determining metameric color
matches, but it does not give us an absolute scale for color
appearance. For example, there is a strong tendency for
viewers to discount the illuminant in their observations, and
the color one sees depends strongly on the ambient light-
ing and the surround. For example, Eq. (1) might compute a
yellow-orange color for a white patch under a tungsten illu-
minant, while a human observer would still call it “white” if
they were in a room lit by the same tungsten source. In fact, a
standard photograph of the patch would show its true yellow-
orange color, and most novice photographers have the expe-
rience of being startled when the colors they get back from
their indoor snapshots are not as they remembered them.

To provide for the viewer’s chromatic adaptation and thus
avoid a color cast in our image after all our hard work, we
apply a von Kries style linear transform to our values prior to
display17. This transform takes an XYZ material color com-
puted under our scene illuminant, and shifts it to the equiv-
alent, apparent color XYZ � under a different illuminant that
corresponds to our display viewing condition. All we need
are the XYZ colors for white under the two illuminants as
computed by Eq. (1) with ρm

�
λ � � 1, and a 3 � 3 transfor-

mation matrix, MC, that takes us from XYZ to an appropriate
color space for chromatic adaptation. (We will discuss the
choice of MC shortly.) The combined adaptation and display
transform is given in Eq. (2), below:��

R �m
G �m
B �m
�	
� MD M 
 1

C

���� R �w
Rw

0 0

0 G �w
Gw

0

0 0 B �w
Bw

� 	
MC

��
Xm

Ym

Zm

�	��
(2)

where ��
Rw

Gw

Bw

�	
� MC

��
Xw

Yw

Zw

�	

for the scene illuminant, and similarly for the display white
point,

�
X �w
�
Y �w
�
Z �w � .

The display matrix, MD, that we added to the standard
von Kries transform, takes us from CIE XYZ coordinates to
our display color space. For an sRGB image or monitor with
D65 white point15, one would use the following matrix, fol-
lowed by a gamma correction of 1 � 2 � 2:

MsRGB �
��

3 � 2410 � 1 � 5374 � 0 � 4986� 0 � 9692 1 � 8760 0 � 0416
0 � 0556 � 0 � 2040 1 � 0570

�	

If we are rendering a high dynamic-range scene, we may
need to apply a tone-mapping operator such as Larson et al6

to compress our values into a displayable range. The tone
operator of Pattanaik et al even incorporates a partial chro-
matic adaptation model12.

The choice of which matrix to use for chromatic adap-
tation, MC, is an interesting one. Much debate has gone on
in the color science community over the past few years as
to which space is most appropriate, and several contenders
seem to perform equally well in side-by-side experiments2.
However, it seems clear that RGB primary sets that are
“sharper” (more saturated) tend to be more plausible than
primaries that are inward of the spectral locus4. In this pa-
per, we have selected the Sharp adaptation matrix for MC,
which was proposed based on spectral sharpening of color-
matching data17:

MSharp �
��

1 � 2694 � 0 � 0988 � 0 � 1706� 0 � 8364 1 � 8006 0 � 0357
0 � 0297 � 0 � 0315 1 � 0018

�	
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Figure 1: A plot showing the relative gamuts of the sRGB
and Sharp color spaces.
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Figure 1 shows a CIE
�
u �
�
v � � plot with the locations of

the sRGB and Sharp color primaries relative to the visible
gamut. Clearly, one could not manufacture a color monitor
with Sharp primaries, as they lie just outside the spectral lo-
cus. However, this poses no problem for a color transform or
a rendering calculation, since we can always transform back
to a displayable color space.

In fact, the Sharp primaries may be preferred for rendering
and RGB image representation simply because they include
a larger gamut than the standard sRGB primaries. This is not
an issue if one can represent color values less than zero and
greater than one, but most image formats and some rendering
frameworks do not permit this. As we will see in Section 3,
the choice of color space plays a significant role in the final
image accuracy, even when gamut is not an issue.

2.2. Application to Rendering

We begin with the assumption that the direct-diffuse com-
ponent is most important to color and overall rendering ac-
curacy. Inside the shader of a conventional RGB rendering
system, the direct-diffuse component is computed by mul-
tiplying the light source color by the diffuse material color,
where color multiplication happens separately for each of
the three RGB values. If this calculation is accurate, it must
give the same result one would get using Eq. (1) followed by
conversion to the rendering color space. In general, this will
not be the case, because the diffuse RGB for the surface will
be based on some other illuminant whose spectrum does not
match the one in the model.

For example, the CIE
�
x

�
y � chromaticities and Y -

reflectances published on the back of the Macbeth Col-
orChecker chart9 are measured under standard illuminant C,
which is a simulated overcast sky. If a user wants to use the
Macbeth color Purple in his RGB rendering of an interior
space with an incandescent (tungsten) light source, he might
convert the published

�
Y

�
x

�
y � reflectances directly to RGB

values using the inverse of MsRGB given earlier. Unfortu-
nately, he makes at least three mistakes in doing so. First,
he is forgetting to perform a white point transform, so there
is a slight red shift as he converts from

�
Y

�
x

�
y � under the

bluish illuminant C to the more neutral D65 white point of
sRGB. Second, the tungsten source in his model has a slight
orange hue he forgets to account for, and there should be a
general darkening of the surface under this illuminant, which
he fails to simulate. Finally, the weak output at the blue end
of a tungsten spectrum makes purple very difficult to distin-
guish from blue, and he has failed to simulate this metameric
effect in his rendering. In the end, the rendering shows some-
thing more like violet than the dark blue one would actually
witness for this color in such a scene.

If the spectra of all the light sources are equivalent, we
can precompute the correct result for the direct-diffuse com-
ponent and replace the light sources with neutral (white)

emitters, inserting our spectrally prefiltered RGB values as
the diffuse reflectances in each material. We need not worry
about how many spectral samples we can afford, since we
only have to perform the calculation once for each material
in a preprocess. If we intend to render in our display color
space, we may even perform the white balance transform
ahead of time, saving ourselves the final 3 � 3 matrix trans-
form at each pixel.

In Section 3, we analyze the error associated with three
different color spaces using our spectral prefiltering method,
and compare it statistically to the error from naive rendering.
The first color space we apply is CIE XYZ space, as recom-
mended by Borges1. The second color space we use is linear
sRGB, which has the CCIR-709 RGB color primaries that
correspond to nominal CRT display phosphors15 . The third
color space is the same one we apply in our white point trans-
formation, the Sharp RGB space. We look at cases of direct
lighting under a single illuminant, where we expect our tech-
nique to perform well, and mixed illuminants with indirect
diffuse and specular reflections, where we expect prefiltering
to work less effectively.

When we render in CIE XYZ space, it makes the most
sense to go directly from the prefiltered result of Eq. (1) to
XYZ colors divided by white under the same illuminant:

Xm
� � Xm

Xw
Ym

� � Ym

Yw
Zm

� � Zm

Zw

We may then render with light sources using their absolute
XYZ emissions, and the resulting XYZ direct diffuse com-
ponent will be correct in absolute terms, since they will be
remultiplied by the source colors. The final white point ad-
justment may then be combined with the display color trans-
form exactly as shown in Eq. (2).

When we render in sRGB space, it is more convenient
to perform white balancing ahead of time, applying both
Eq. (1) and Eq. (2) prior to rendering. All light sources that
match the spectrum of the dominant illuminant will be mod-
eled as neutral, and spectrally distinct light sources will be
modeled as having their sRGB color divided by that of the
dominant illuminant.

When we render in the Sharp RGB space, we can elimi-
nate the transformation into another color space by applying
just the right half of Eq. (2) to the surface colors calculated
by Eq. (1):��

Rm
�

Gm
�

Bm
�

�	
�
��� 1

Rw
0 0

0 1
Gw

0
0 0 1

Bw

� 	
MSharp

��
Xm

Ym

Zm

�	 �

Dominant illuminants will again be modeled as neutral, and
spectrally distinct illuminants will use:

Rs
� � Rs

Rw
Gs

� � Gs

Gw
Bs

� � Bs

Bw

The final transformation to the display space will apply the
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remaining part of Eq. (2):��
Rd
Gd
Bd

�	
� MD M 
 1

Sharp

��
R �w 0 0
0 G �w 0
0 0 B �w

�	 ��
R �m
G �m
B �m
�	
�

3. Results

Our test scene was constructed using published spectral data
and simple geometry. It consists of a square room with two
light sources and two spheres. One sphere is made of a
smooth plastic with a 5% specular component, and the other
sphere is made of pure, polished gold (24 carat). The diffuse
color of the plastic ball is Macbeth Green9. The color of el-
emental gold is computed from its complex index of refrac-
tion as a function of wavelength. The ceiling, floor, and far
wall are made of the Macbeth Neutral.8 material. The left
wall is Macbeth Red, and the right wall is Macbeth Blue.
The near wall, seen in the reflection of the spheres, is the
Macbeth BlueFlower color. The left light source is a 2856 � K
tungsten source (i.e., Standard Illuminant A). The right light
source is a cool white fluorescent.

All spectral data for our scene were taken from the mate-
rial tables in Appendix G of Glassner’s Principles of Digital
Image Synthesis5, and these are also available in the Mate-
rials and Geometry Format (MGF)18. For convenience, the
model used in this paper has been prepared as a set of MGF
files and included with our image comparisons in the sup-
plemental materials.

Figure 2 shows a Monte Carlo path tracing of this envi-
ronment with fluorescent lighting using 69 evenly spaced
spectral samples from 380 to 720 nm, which is the resolu-
tion of our input data. Using our spectral prefiltering method
with the cool white illuminant, we recomputed the image
using only three sRGB components, taking care to retrace
exactly the same ray paths. The result shown in Figure 3 is
nearly indistinguishable from the original, with the possi-
ble exception of the reflection of the blue wall in the gold
sphere. This can be seen graphically in Figure 5, which plots
the CIE 1994 Lab ∆E � color difference10 in false color. A
∆E � value of one is just noticeable if the colors are adjacent,
and we have found values above five or so to be visible in
side-by-side image comparisons.

Using a naive assumption of an equal-energy illuminant,
we recomputed the sRGB material colors from their re-
flectance spectra and rendered the scene again, arriving at
Figure 4. The rendering took the same time to finish, about a
third as long as the full-spectral rendering, and the results are
quite different. Both the red wall and the green sphere have
changed lightness and saturation from the reference image,
the blue wall is reflected as purple in the gold sphere, and
the ∆E � errors shown in Figure 6 are over 20 in large re-
gions. Clearly, this level of accuracy is unacceptable for crit-
ical color evaluations, such as selecting a color to repaint the
living room.

XYZ sRGB SharpIllum Method
50% 98% 50% 98% 50% 98%

tung naive 10.4 45.9 4.8 15.4 0.8 5.1
prefilt 2.3 5.7 0.6 1.5 0.5 0.9

fluor naive 6.1 32.0 5.8 39.2 1.1 6.0
prefilt 2.0 6.6 0.4 1.2 0.4 0.8

both naive 5.6 31.6 4.5 21.5 0.6 2.8
prefilt tung 4.9 15.1 0.5 2.0 0.7 2.2
prefilt fluor 4.8 55.1 0.6 6.5 0.7 8.6
Average 5.7 27.4 2.8 12.5 0.7 3.8

Table 1: CIE 1994 Lab ∆E � percentiles for our example
scene.

We repeated the same comparisons in CIE XYZ and Sharp
RGB color spaces, then changed the lighting configuration
and ran them again. Besides the fluorescent-only lighting
condition, we looked at tungsten-only and both sources to-
gether. Since the lumen output of the two sources is equal,
it was not clear which one to choose as the dominant illu-
minant, so we applied our prefiltering technique first to one
source then to the other. Altogether, we compared 21 com-
binations of light sources, color spaces, and rendering meth-
ods to our multispectral reference solution. The false color
images showing the ∆E � for each comparison are included
in the supplemental materials, and we summarize the results
statistically in Table 1 and Figure 7.

Table 1 gives the 50th percentile (median) and 98th per-
centile ∆E � statistics for each combination of method, light-
ing, and color space. These columns are averaged to show
the relative performance of the three rendering color spaces
at the bottom. Figure 7 plots the errors in Table 1 as a bar
chart. The 50th percentile errors are coupled with the 98th
percentile errors in each bar. In all but one simulation, the
Sharp RGB color space keeps the median error below the
detectable threshold, and the majority of the Sharp render-
ings have 98% of their pixels below a ∆E � of five relative to
the reference solution, a level at which it is difficult to tell
the images apart in side-by-side comparisons. The smallest
errors are associated with the Sharp color space and spectral
prefiltering with a single illuminant, where 98% of the pixels
have errors below the detectable threshold. In the mixed illu-
minant condition, spectral prefiltering using tungsten as the
dominant illuminant performs slightly better than a naive as-
sumption, and prefiltering using cool white as the dominant
illuminant performs slightly worse. The worst performance
by far is seen when we use CIE XYZ as the rendering space,
which produces noticeable differences above five for over
2% of the pixels in every simulation, and a median ∆E � over
five in each naive simulation.
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Figure 2: Our reference multi-spectral solution for the
fluorescent-only scene.

Figure 3: Our prefiltered sRGB solution for the fluorescent-
only scene.

Figure 4: Our naive sRGB solution for the fluorescent-only
scene.

Figure 5: The ∆E � error for the prefiltered sRGB solution.

Figure 6: The ∆E � error for the naive sRGB solution. Figure 7: Error statistics for all solutions and color spaces.

4. Conclusions

In our experiments, we found spectral prefiltering to mini-
mize color errors in scenes with a single dominant illumi-
nant spectrum, regardless of the rendering color space. The
median CIE 1994 Lab ∆E � values were reduced by a factor
of six on average, to levels that were below the detectable
threshold when using the sRGB and Sharp color spaces. Of
the three color spaces we used for rendering, the CIE XYZ
performed the worst, generating median errors that were
above the detectable threshold even with prefiltering, and
five times the threshold without prefiltering, meaning the dif-
ference was clearly visible over most of the image in side-
by-side comparisons to the reference solution. In contrast,
the Sharp RGB color space, favored by the color science

community for chromatic adaptation transforms, performed
exceptionally well in a rendering context, producing median
error levels that were at or below the detectable threshold
both with and without prefiltering.

We believe the Sharp RGB space works especially well
for rendering by minimizing the representation error for tris-
timulus values with axes that are aligned along the densest
regions of XYZ space, perceptually. This property is held
in common with the AC1C2 color space recommended by
Meyer for rendering for this reason11. In fact, the AC1C2
space has also been favored for chromatic adaptation, indi-
cating the strong connection between rendering calculations
and von Kries style transforms. This is evident in the diago-
nal matrix of Eq. (2), where white point primaries are mul-
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tiplied in separate channels, analogous to the color calcula-
tions inside a three-component shader. Just as a white point
shifts in a von Kries calculation, so do colors shift as they
are reflected by a material.

The combination of spectral prefiltering and the Sharp
RGB space is particularly effective. With prefiltering under
a single illuminant, 98% of the pixels were below the de-
tectable error threshold using the Sharp RGB space, and only
a single highlight in the gold sphere was distinguishable in
our side-by-side comparisons. We included a polished gold
sphere because we knew its strong spectral selectivity and
specularity violated one of our key assumptions, which is
that the direct-diffuse component dominates the rendering.
We saw in our results that the errors using prefiltering for
the gold sphere are no worse than without, and it probably
does not matter whether we apply our prefiltering method
to specular colors or not, since specular materials tend to
reflect other surfaces more than light sources in the final im-
age, anyway. However, rendering in a sharpened RGB space
always seems to help.

We also tested the performance of prefiltering when we
violated our second assumption of a single, dominant illumi-
nant spectrum. When both sources were present and equally
bright, the median error was still below the visible threshold
using prefiltering in either the sRGB or Sharp color space.
Without prefiltering, the median jumped significantly for the
sRGB space, but was still below threshold for Sharp RGB
rendering. Thus, prefiltering performed no worse on average
than the naive approach for mixed illuminants, which was
our goal as stated in the introduction.

In conclusion, we have presented an approach to RGB ren-
dering that works within any standard framework, adding
virtually nothing to the computation time while reducing
color difference errors to below the detectable threshold in
typical environments. The spectral prefiltering technique ac-
commodates sharp peaks and valleys in the source and re-
flectance spectra, and user-selection of a dominant illumi-
nant avoids most white balance problems in the output. Ren-
dering in a sharpened RGB space also greatly improves color
accuracy, independent of prefiltering. Work still needs to be
done in the areas of mixed illuminants and colored specular
reflections, and we would like to test our method on a greater
variety of example scenes.
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