ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/src/util/rmatrix.c
Revision: 2.103
Committed: Thu Oct 30 17:26:45 2025 UTC (31 hours, 57 minutes ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.102: +3 -56 lines
Log Message:
refactor: even simpler code simplification

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.102 2025/10/30 16:47:54 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15 #if !defined(_WIN32) && !defined(_WIN64)
16 #include <sys/mman.h>
17 #endif
18
19 static const char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 /* Initialize a RMATRIX struct but don't allocate array space */
22 RMATRIX *
23 rmx_new(int nr, int nc, int ncomp)
24 {
25 RMATRIX *dnew;
26
27 if (ncomp <= 0)
28 return(NULL);
29
30 dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX));
31 if (!dnew)
32 return(NULL);
33
34 dnew->dtype = DTrmx_native;
35 dnew->nrows = nr;
36 dnew->ncols = nc;
37 dnew->ncomp = ncomp;
38 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
39 memcpy(dnew->wlpart, WLPART, sizeof(dnew->wlpart));
40
41 return(dnew);
42 }
43
44 /* Prepare a RMATRIX for writing (allocate array if needed) */
45 int
46 rmx_prepare(RMATRIX *rm)
47 {
48 if (!rm) return(0);
49 if (rm->mtx) /* assume it's right size */
50 return(1);
51 if ((rm->nrows <= 0) | (rm->ncols <= 0) | (rm->ncomp <= 0))
52 return(0);
53 rm->mtx = (rmx_dtype *)malloc(rmx_array_size(rm));
54 rm->pflags |= RMF_FREEMEM;
55 return(rm->mtx != NULL);
56 }
57
58 /* Call rmx_new() and rmx_prepare() */
59 RMATRIX *
60 rmx_alloc(int nr, int nc, int ncomp)
61 {
62 RMATRIX *dnew = rmx_new(nr, nc, ncomp);
63
64 if (!rmx_prepare(dnew)) {
65 rmx_free(dnew);
66 return(NULL);
67 }
68 return(dnew);
69 }
70
71 /* Clear state by freeing info and matrix data */
72 void
73 rmx_reset(RMATRIX *rm)
74 {
75 if (!rm) return;
76 if (rm->info) {
77 free(rm->info);
78 rm->info = NULL;
79 }
80 #ifdef MAP_FILE
81 if (rm->mapped) {
82 munmap(rm->mapped, rmx_mapped_size(rm));
83 rm->mapped = NULL;
84 } else
85 #endif
86 if (rm->pflags & RMF_FREEMEM) {
87 free(rm->mtx);
88 rm->pflags &= ~RMF_FREEMEM;
89 }
90 rm->mtx = NULL;
91 }
92
93 /* Free an RMATRIX struct and data */
94 void
95 rmx_free(RMATRIX *rm)
96 {
97 if (!rm) return;
98 rmx_reset(rm);
99 free(rm);
100 }
101
102 /* Resolve data type based on two input types (returns 0 for mismatch) */
103 int
104 rmx_newtype(int dtyp1, int dtyp2)
105 {
106 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp1==DTspec) |
107 (dtyp2==DTxyze) | (dtyp2==DTrgbe) | (dtyp2==DTspec)
108 && dtyp1 != dtyp2)
109 return(0);
110 if (dtyp1 < dtyp2)
111 return(dtyp1);
112 return(dtyp2);
113 }
114
115 /* Append header information associated with matrix data */
116 int
117 rmx_addinfo(RMATRIX *rm, const char *info)
118 {
119 size_t oldlen = 0;
120
121 if (!rm || !info || !*info)
122 return(0);
123 if (!rm->info) {
124 rm->info = (char *)malloc(strlen(info)+1);
125 } else {
126 oldlen = strlen(rm->info);
127 rm->info = (char *)realloc(rm->info,
128 oldlen+strlen(info)+1);
129 }
130 if (!rm->info)
131 return(0);
132 strcpy(rm->info+oldlen, info);
133 return(1);
134 }
135
136 static int
137 get_dminfo(char *s, void *p)
138 {
139 RMATRIX *ip = (RMATRIX *)p;
140 char fmt[MAXFMTLEN];
141 int i;
142
143 if (isheadid(s))
144 return(0);
145 if (isncomp(s)) {
146 ip->ncomp = ncompval(s);
147 return(ip->ncomp - 1);
148 }
149 if (!strncmp(s, "NROWS=", 6)) {
150 ip->nrows = atoi(s+6);
151 return(ip->nrows - 1);
152 }
153 if (!strncmp(s, "NCOLS=", 6)) {
154 ip->ncols = atoi(s+6);
155 return(ip->ncols - 1);
156 }
157 if ((i = isbigendian(s)) >= 0) {
158 if (nativebigendian() != i)
159 ip->pflags |= RMF_SWAPIN;
160 else
161 ip->pflags &= ~RMF_SWAPIN;
162 return(0);
163 }
164 if (isexpos(s)) {
165 float f = exposval(s);
166 scalecolor(ip->cexp, f);
167 return(f > .0 ? 0 : -1);
168 }
169 if (iscolcor(s)) {
170 COLOR ctmp;
171 if (!colcorval(ctmp, s)) return(-1);
172 multcolor(ip->cexp, ctmp);
173 return(0);
174 }
175 if (iswlsplit(s))
176 return(wlsplitval(ip->wlpart, s) - 1);
177
178 if (!formatval(fmt, s)) {
179 rmx_addinfo(ip, s);
180 return(0);
181 } /* else check format */
182 for (i = 1; i < DTend; i++)
183 if (!strcmp(fmt, cm_fmt_id[i])) {
184 ip->dtype = i;
185 return(0);
186 }
187 return(-1); /* bad format */
188 }
189
190 static int
191 rmx_load_ascii(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
192 {
193 int j, k;
194
195 for (j = 0; j < rm->ncols; j++)
196 for (k = rm->ncomp; k-- > 0; )
197 if (fscanf(fp, rmx_scanfmt, drp++) != 1)
198 return(0);
199 return(1);
200 }
201
202 static int
203 rmx_load_float(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
204 {
205 #if DTrmx_native==DTfloat
206 if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols)
207 return(0);
208 if (rm->pflags & RMF_SWAPIN)
209 swap32((char *)drp, rm->ncols*rm->ncomp);
210 #else
211 int j, k;
212 float val[MAXCOMP];
213
214 if (rm->ncomp > MAXCOMP) {
215 fputs("Unsupported # components in rmx_load_float()\n", stderr);
216 exit(1);
217 }
218 for (j = 0; j < rm->ncols; j++) {
219 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
220 return(0);
221 if (rm->pflags & RMF_SWAPIN)
222 swap32((char *)val, rm->ncomp);
223 for (k = 0; k < rm->ncomp; k++)
224 *drp++ = val[k];
225 }
226 #endif
227 return(1);
228 }
229
230 static int
231 rmx_load_double(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
232 {
233 #if DTrmx_native==DTdouble
234 if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols)
235 return(0);
236 if (rm->pflags & RMF_SWAPIN)
237 swap64((char *)drp, rm->ncols*rm->ncomp);
238 #else
239 int j, k;
240 double val[MAXCOMP];
241
242 if (rm->ncomp > MAXCOMP) {
243 fputs("Unsupported # components in rmx_load_double()\n", stderr);
244 exit(1);
245 }
246 for (j = 0; j < rm->ncols; j++) {
247 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
248 return(0);
249 if (rm->pflags & RMF_SWAPIN)
250 swap64((char *)val, rm->ncomp);
251 for (k = 0; k < rm->ncomp; k++)
252 *drp++ = (float)val[k];
253 }
254 #endif
255 return(1);
256 }
257
258 #if DTrmx_native==DTfloat
259 #define rmx_load_spec(dp,rm,fp) (freadsscan(dp,(rm)->ncomp,(rm)->ncols,fp) >= 0)
260 #else
261 static int
262 rmx_load_spec(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
263 {
264 COLRV *scan;
265 COLORV scol[MAXCOMP];
266 int j, k;
267
268 if ((rm->ncomp < 3) | (rm->ncomp > MAXCOMP))
269 return(0);
270 scan = (COLRV *)tempbuffer((rm->ncomp+1)*rm->ncols);
271 if (!scan)
272 return(0);
273 if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0)
274 return(0);
275 for (j = 0; j < rm->ncols; j++) {
276 scolr2scolor(scol, scan+j*(rm->ncomp+1), rm->ncomp);
277 for (k = 0; k < rm->ncomp; k++)
278 *drp++ = scol[k];
279 }
280 return(1);
281 }
282 #endif
283
284 /* Read matrix header from input stream (cannot be XML) */
285 int
286 rmx_load_header(RMATRIX *rm, FILE *fp)
287 {
288 if (!rm | !fp)
289 return(0);
290 rmx_reset(rm); /* clear state */
291 if (rm->nrows | rm->ncols | !rm->dtype) {
292 rm->nrows = rm->ncols = 0;
293 rm->ncomp = 3;
294 setcolor(rm->cexp, 1.f, 1.f, 1.f);
295 memcpy(rm->wlpart, WLPART, sizeof(rm->wlpart));
296 rm->pflags = 0;
297 }
298 rm->dtype = DTascii; /* assumed w/o FORMAT */
299 if (getheader(fp, get_dminfo, rm) < 0) {
300 fputs("Bad matrix header\n", stderr);
301 return(0);
302 }
303 if ((rm->dtype == DTrgbe) | (rm->dtype == DTxyze) &&
304 rm->ncomp != 3)
305 return(0);
306 if (rm->ncols <= 0 && /* resolution string? */
307 !fscnresolu(&rm->ncols, &rm->nrows, fp))
308 return(0);
309 if (rm->dtype == DTascii) /* set file type (WINDOWS) */
310 SET_FILE_TEXT(fp);
311 else
312 SET_FILE_BINARY(fp);
313 return(1);
314 }
315
316 /* Load next row as rmx_dtype (cannot be XML) */
317 int
318 rmx_load_row(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
319 {
320 switch (rm->dtype) {
321 case DTascii:
322 return(rmx_load_ascii(drp, rm, fp));
323 case DTfloat:
324 return(rmx_load_float(drp, rm, fp));
325 case DTdouble:
326 return(rmx_load_double(drp, rm, fp));
327 case DTrgbe:
328 case DTxyze:
329 case DTspec:
330 return(rmx_load_spec(drp, rm, fp));
331 default:
332 fputs("Unsupported data type in rmx_load_row()\n", stderr);
333 }
334 return(0);
335 }
336
337 /* Allocate & load post-header data from stream given type set in rm->dtype */
338 int
339 rmx_load_data(RMATRIX *rm, FILE *fp)
340 {
341 int i;
342 #ifdef MAP_FILE
343 long pos; /* map memory for file > 1MB if possible */
344 if ((rm->dtype == DTrmx_native) & !(rm->pflags & RMF_SWAPIN) &
345 (rmx_array_size(rm) >= 1L<<20) &&
346 (pos = ftell(fp)) >= 0 && !(pos % sizeof(rmx_dtype))) {
347 rm->mapped = mmap(NULL, rmx_array_size(rm)+pos, PROT_READ|PROT_WRITE,
348 MAP_PRIVATE, fileno(fp), 0);
349 if (rm->mapped != MAP_FAILED) {
350 if (rm->pflags & RMF_FREEMEM)
351 free(rm->mtx);
352 rm->mtx = (rmx_dtype *)rm->mapped + pos/sizeof(rmx_dtype);
353 rm->pflags &= ~RMF_FREEMEM;
354 return(1);
355 } /* else fall back on reading into memory */
356 rm->mapped = NULL;
357 }
358 #endif
359 if (!rmx_prepare(rm)) { /* need in-core matrix array */
360 fprintf(stderr, "Cannot allocate %g MByte matrix array\n",
361 (1./(1L<<20))*(double)rmx_array_size(rm));
362 return(0);
363 }
364 for (i = 0; i < rm->nrows; i++)
365 if (!rmx_load_row(rmx_lval(rm,i,0), rm, fp))
366 return(0);
367 return(1);
368 }
369
370 /* Load matrix from supported file type */
371 RMATRIX *
372 rmx_load(const char *inspec)
373 {
374 FILE *fp;
375 RMATRIX *dnew;
376 int ok;
377
378 if (!inspec)
379 inspec = stdin_name;
380 else if (!*inspec)
381 return(NULL);
382 if (inspec == stdin_name) /* reading from stdin? */
383 fp = stdin;
384 else if (inspec[0] == '!')
385 fp = popen(inspec+1, "r");
386 else
387 fp = fopen(inspec, "r");
388 if (!fp) {
389 fprintf(stderr, "Cannot open for reading: %s\n", inspec);
390 return(NULL);
391 }
392 #ifdef getc_unlocked
393 flockfile(fp);
394 #endif
395 SET_FILE_BINARY(fp); /* load header info */
396 if (!rmx_load_header(dnew = rmx_new(0,0,3), fp)) {
397 fprintf(stderr, "Bad header in: %s\n", inspec);
398 if (inspec[0] == '!') pclose(fp);
399 else fclose(fp);
400 rmx_free(dnew);
401 return(NULL);
402 }
403 ok = rmx_load_data(dnew, fp); /* allocate & load data */
404
405 if (fp != stdin) { /* close input stream */
406 if (inspec[0] == '!')
407 ok &= pclose(fp)==0;
408 else
409 fclose(fp);
410 }
411 #ifdef getc_unlocked
412 else
413 funlockfile(fp);
414 #endif
415 if (!ok) { /* load failure? */
416 fprintf(stderr, "Error loading data from: %s\n", inspec);
417 rmx_free(dnew);
418 return(NULL);
419 }
420 /* undo exposure? */
421 if ((dnew->cexp[0] != 1.f) |
422 (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) {
423 double cmlt[MAXCOMP];
424 int i;
425 if (dnew->ncomp > MAXCOMP) {
426 fprintf(stderr, "Excess spectral components in: %s\n",
427 inspec);
428 rmx_free(dnew);
429 return(NULL);
430 }
431 cmlt[0] = 1./dnew->cexp[0];
432 cmlt[1] = 1./dnew->cexp[1];
433 cmlt[2] = 1./dnew->cexp[2];
434 for (i = dnew->ncomp; i-- > 3; )
435 cmlt[i] = cmlt[1]; /* XXX hack! */
436 rmx_scale(dnew, cmlt);
437 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
438 }
439 return(dnew);
440 }
441
442 #if DTrmx_native==DTdouble
443 static int
444 rmx_write_float(const rmx_dtype *dp, int len, FILE *fp)
445 {
446 float val;
447
448 while (len--) {
449 val = (float)*dp++;
450 if (putbinary(&val, sizeof(val), 1, fp) != 1)
451 return(0);
452 }
453 return(1);
454 }
455 #else
456 static int
457 rmx_write_double(const rmx_dtype *dp, int len, FILE *fp)
458 {
459 double val;
460
461 while (len--) {
462 val = *dp++;
463 if (putbinary(&val, sizeof(val), 1, fp) != 1)
464 return(0);
465 }
466 return(1);
467 }
468 #endif
469
470 static int
471 rmx_write_ascii(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
472 {
473 while (len-- > 0) {
474 int k = ncomp;
475 while (k-- > 0)
476 fprintf(fp, " %.7e", *dp++);
477 fputc('\t', fp);
478 }
479 return(fputc('\n', fp) != EOF);
480 }
481
482 static int
483 rmx_write_rgbe(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
484 {
485 COLR *scan;
486 int j;
487
488 if ((ncomp != 1) & (ncomp != 3)) return(0);
489 scan = (COLR *)tempbuffer(sizeof(COLR)*len);
490 if (!scan) return(0);
491
492 for (j = 0; j < len; j++, dp += ncomp)
493 if (ncomp == 1)
494 setcolr(scan[j], dp[0], dp[0], dp[0]);
495 else
496 setcolr(scan[j], dp[0], dp[1], dp[2]);
497
498 return(fwritecolrs(scan, len, fp) >= 0);
499 }
500
501 #if DTrmx_native==DTfloat
502 #define rmx_write_spec(dp,nc,ln,fp) (fwritesscan(dp,nc,ln,fp) >= 0)
503 #else
504 static int
505 rmx_write_spec(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
506 {
507 COLRV *scan;
508 COLORV scol[MAXCOMP];
509 int j, k;
510
511 if ((ncomp < 3) | (ncomp > MAXCOMP)) return(0);
512 scan = (COLRV *)tempbuffer((ncomp+1)*len);
513 if (!scan) return(0);
514 for (j = 0; j < len; j++, dp += ncomp) {
515 for (k = ncomp; k--; )
516 scol[k] = dp[k];
517 scolor2scolr(scan+j*(ncomp+1), scol, ncomp);
518 }
519 return(fwritescolrs(scan, ncomp, len, fp) >= 0);
520 }
521 #endif
522
523 /* Check if CIE XYZ primaries were specified */
524 static int
525 findCIEprims(const char *info)
526 {
527 RGBPRIMS prims;
528
529 if (!info)
530 return(0);
531 info = strstr(info, PRIMARYSTR);
532 if (!info || !primsval(prims, info))
533 return(0);
534
535 return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) &&
536 (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) &&
537 (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01));
538 }
539
540 /* Finish writing header data with resolution and format, returning type used */
541 int
542 rmx_write_header(const RMATRIX *rm, int dtype, FILE *fp)
543 {
544 if (!rm | !fp || rm->ncols <= 0)
545 return(0);
546 if (rm->info)
547 fputs(rm->info, fp);
548 if (dtype == DTfromHeader) {
549 dtype = rm->dtype;
550 #if DTrmx_native==DTfloat
551 if (dtype == DTdouble) /* but stored as float? */
552 dtype = DTfloat;
553 #endif
554 } else if (dtype == DTrgbe && (rm->dtype == DTxyze ||
555 findCIEprims(rm->info)))
556 dtype = DTxyze;
557 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
558 dtype = DTrgbe;
559 if ((dtype < DTspec) & (rm->ncomp > 3))
560 dtype = DTspec;
561 else if ((dtype == DTspec) & (rm->ncomp <= 3))
562 return(0);
563
564 if (dtype == DTascii) /* set file type (WINDOWS) */
565 SET_FILE_TEXT(fp);
566 else
567 SET_FILE_BINARY(fp);
568 /* write exposure? */
569 if (rm->ncomp == 3 && (rm->cexp[RED] != rm->cexp[GRN]) |
570 (rm->cexp[GRN] != rm->cexp[BLU]))
571 fputcolcor(rm->cexp, fp);
572 else if (rm->cexp[GRN] != 1.f)
573 fputexpos(rm->cexp[GRN], fp);
574 /* matrix size? */
575 if ((dtype > DTspec) | (rm->nrows <= 0)) {
576 if (rm->nrows > 0)
577 fprintf(fp, "NROWS=%d\n", rm->nrows);
578 fprintf(fp, "NCOLS=%d\n", rm->ncols);
579 }
580 if (dtype >= DTspec) { /* # components & split? */
581 fputncomp(rm->ncomp, fp);
582 if (rm->ncomp > 3 &&
583 memcmp(rm->wlpart, WLPART, sizeof(WLPART)))
584 fputwlsplit(rm->wlpart, fp);
585 } else if ((rm->ncomp != 3) & (rm->ncomp != 1))
586 return(0); /* wrong # components */
587 if ((dtype == DTfloat) | (dtype == DTdouble))
588 fputendian(fp); /* important to record */
589 fputformat(cm_fmt_id[dtype], fp);
590 fputc('\n', fp); /* end of header */
591 if ((dtype <= DTspec) & (rm->nrows > 0))
592 fprtresolu(rm->ncols, rm->nrows, fp);
593 return(dtype);
594 }
595
596 /* Write out matrix data (usually by row) */
597 int
598 rmx_write_data(const rmx_dtype *dp, int ncomp, int len, int dtype, FILE *fp)
599 {
600 switch (dtype) {
601 #if DTrmx_native==DTdouble
602 case DTfloat:
603 return(rmx_write_float(dp, ncomp*len, fp));
604 #else
605 case DTdouble:
606 return(rmx_write_double(dp, ncomp*len, fp));
607 #endif
608 case DTrmx_native:
609 return(putbinary(dp, sizeof(*dp)*ncomp, len, fp) == len);
610 case DTascii:
611 return(rmx_write_ascii(dp, ncomp, len, fp));
612 case DTrgbe:
613 case DTxyze:
614 return(rmx_write_rgbe(dp, ncomp, len, fp));
615 case DTspec:
616 return(rmx_write_spec(dp, ncomp, len, fp));
617 }
618 return(0);
619 }
620
621 /* Write matrix using file format indicated by dtype */
622 int
623 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
624 {
625 int ok = 0;
626 int i;
627 /* complete header */
628 dtype = rmx_write_header(rm, dtype, fp);
629 if (dtype <= 0)
630 return(0);
631 #ifdef getc_unlocked
632 flockfile(fp);
633 #endif
634 if (dtype == DTrmx_native) /* write all at once? */
635 ok = rmx_write_data(rm->mtx, rm->ncomp,
636 rm->nrows*rm->ncols, dtype, fp);
637 else /* else row by row */
638 for (i = 0; i < rm->nrows; i++) {
639 ok = rmx_write_data(rmx_val(rm,i,0), rm->ncomp,
640 rm->ncols, dtype, fp);
641 if (!ok) break;
642 }
643
644 if (ok) ok = (fflush(fp) == 0);
645 #ifdef getc_unlocked
646 funlockfile(fp);
647 #endif
648 if (!ok) fputs("Error writing matrix\n", stderr);
649 return(ok);
650 }
651
652 /* Allocate and assign square identity matrix with n components */
653 RMATRIX *
654 rmx_identity(const int dim, const int n)
655 {
656 RMATRIX *rid = rmx_alloc(dim, dim, n);
657 int i, k;
658
659 if (!rid)
660 return(NULL);
661 memset(rid->mtx, 0, rmx_array_size(rid));
662 for (i = dim; i--; ) {
663 rmx_dtype *dp = rmx_lval(rid,i,i);
664 for (k = n; k--; )
665 dp[k] = 1.;
666 }
667 return(rid);
668 }
669
670 /* Duplicate the given matrix (may be unallocated) */
671 RMATRIX *
672 rmx_copy(const RMATRIX *rm)
673 {
674 RMATRIX *dnew;
675
676 if (!rm)
677 return(NULL);
678 dnew = rmx_new(rm->nrows, rm->ncols, rm->ncomp);
679 if (!dnew)
680 return(NULL);
681 if (rm->mtx) {
682 if (!rmx_prepare(dnew)) {
683 rmx_free(dnew);
684 return(NULL);
685 }
686 memcpy(dnew->mtx, rm->mtx, rmx_array_size(dnew));
687 }
688 rmx_addinfo(dnew, rm->info);
689 dnew->dtype = rm->dtype;
690 copycolor(dnew->cexp, rm->cexp);
691 memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart));
692 return(dnew);
693 }
694
695 /* Replace data in first matrix with data from second */
696 int
697 rmx_transfer_data(RMATRIX *rdst, RMATRIX *rsrc, int dometa)
698 {
699 if (!rdst | !rsrc)
700 return(0);
701 if (dometa) { /* transfer everything? */
702 rmx_reset(rdst);
703 *rdst = *rsrc;
704 rsrc->info = NULL; rsrc->mapped = NULL; rsrc->mtx = NULL;
705 return(1);
706 }
707 /* just matrix data -- leave metadata */
708 if ((rdst->nrows != rsrc->nrows) |
709 (rdst->ncols != rsrc->ncols) |
710 (rdst->ncomp != rsrc->ncomp))
711 return(0);
712 #ifdef MAP_FILE
713 if (rdst->mapped)
714 munmap(rdst->mapped, rmx_mapped_size(rdst));
715 else
716 #endif
717 if (rdst->pflags & RMF_FREEMEM) {
718 free(rdst->mtx);
719 rdst->pflags &= ~RMF_FREEMEM;
720 }
721 rdst->mapped = rsrc->mapped;
722 rdst->mtx = rsrc->mtx;
723 rdst->pflags |= rsrc->pflags & RMF_FREEMEM;
724 rsrc->mapped = NULL; rsrc->mtx = NULL;
725 return(1);
726 }
727
728 /* Transpose the given matrix */
729 int
730 rmx_transpose(RMATRIX *rm)
731 {
732 uby8 *bmap;
733 rmx_dtype val[MAXCOMP];
734 RMATRIX dold;
735 int i, j;
736
737 if (!rm || !rm->mtx | (rm->ncomp > MAXCOMP))
738 return(0);
739 if (rm->info)
740 rmx_addinfo(rm, "Transposed rows and columns\n");
741 if ((rm->nrows == 1) | (rm->ncols == 1)) { /* vector? */
742 j = rm->ncols;
743 rm->ncols = rm->nrows;
744 rm->nrows = j;
745 return(1);
746 }
747 if (rm->nrows == rm->ncols) { /* square matrix case */
748 for (i = rm->nrows; --i > 0; )
749 for (j = i; j-- > 0; ) {
750 memcpy(val, rmx_val(rm,i,j),
751 sizeof(rmx_dtype)*rm->ncomp);
752 memcpy(rmx_lval(rm,i,j), rmx_val(rm,j,i),
753 sizeof(rmx_dtype)*rm->ncomp);
754 memcpy(rmx_lval(rm,j,i), val,
755 sizeof(rmx_dtype)*rm->ncomp);
756 }
757 return(1);
758 }
759 #define bmbyte(r,c) bmap[((r)*rm->ncols+(c))>>3]
760 #define bmbit(r,c) (1 << ((r)*rm->ncols+(c) & 7))
761 #define bmop(r,c, op) (bmbyte(r,c) op bmbit(r,c))
762 #define bmtest(r,c) bmop(r,c,&)
763 #define bmset(r,c) bmop(r,c,|=)
764 /* loop completion bitmap */
765 bmap = (uby8 *)calloc(((size_t)rm->nrows*rm->ncols+7)>>3, 1);
766 if (!bmap)
767 return(0);
768 dold = *rm;
769 rm->ncols = dold.nrows; rm->nrows = dold.ncols;
770 for (i = rm->nrows; i--; ) /* try every starting point */
771 for (j = rm->ncols; j--; ) {
772 int i0, j0;
773 int i1 = i;
774 size_t j1 = j;
775 if (bmtest(i, j))
776 continue; /* traversed loop earlier */
777 memcpy(val, rmx_val(rm,i,j),
778 sizeof(rmx_dtype)*rm->ncomp);
779 for ( ; ; ) { /* new transpose loop */
780 const rmx_dtype *ds;
781 i0 = i1; j0 = j1;
782 ds = rmx_val(&dold, j0, i0);
783 j1 = (ds - dold.mtx)/dold.ncomp;
784 i1 = j1 / rm->ncols;
785 j1 -= (size_t)i1*rm->ncols;
786 bmset(i1, j1); /* mark as done */
787 if ((i1 == i) & (j1 == j))
788 break; /* back at start */
789 memcpy(rmx_lval(rm,i0,j0), ds,
790 sizeof(rmx_dtype)*rm->ncomp);
791 } /* complete the loop */
792 memcpy(rmx_lval(rm,i0,j0), val,
793 sizeof(rmx_dtype)*rm->ncomp);
794 }
795 free(bmap); /* all done! */
796 return(1);
797 #undef bmbyte
798 #undef bmbit
799 #undef bmop
800 #undef bmtest
801 #undef bmset
802 }
803
804 /* Multiply (concatenate) two matrices and allocate the result */
805 RMATRIX *
806 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
807 {
808 RMATRIX *mres;
809 int i, j, k, h;
810
811 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
812 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
813 return(NULL);
814 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
815 if (!mres)
816 return(NULL);
817 i = rmx_newtype(m1->dtype, m2->dtype);
818 if (i)
819 mres->dtype = i;
820 else
821 rmx_addinfo(mres, rmx_mismatch_warn);
822 for (i = mres->nrows; i--; )
823 for (j = mres->ncols; j--; )
824 for (k = mres->ncomp; k--; ) {
825 double d = 0;
826 for (h = m1->ncols; h--; )
827 d += (double)rmx_val(m1,i,h)[k] *
828 rmx_val(m2,h,j)[k];
829 rmx_lval(mres,i,j)[k] = (rmx_dtype)d;
830 }
831 return(mres);
832 }
833
834 /* Element-wise multiplication (or division) of m2 into m1 */
835 int
836 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
837 {
838 int zeroDivides = 0;
839 int i, j, k;
840
841 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
842 (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
843 return(0);
844 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
845 return(0);
846 i = rmx_newtype(m1->dtype, m2->dtype);
847 if (i)
848 m1->dtype = i;
849 else
850 rmx_addinfo(m1, rmx_mismatch_warn);
851 for (i = m1->nrows; i--; )
852 for (j = m1->ncols; j--; )
853 if (divide) {
854 rmx_dtype d;
855 if (m2->ncomp == 1) {
856 d = rmx_val(m2,i,j)[0];
857 if (d == 0) {
858 ++zeroDivides;
859 for (k = m1->ncomp; k--; )
860 rmx_lval(m1,i,j)[k] = 0;
861 } else {
862 d = 1./d;
863 for (k = m1->ncomp; k--; )
864 rmx_lval(m1,i,j)[k] *= d;
865 }
866 } else
867 for (k = m1->ncomp; k--; ) {
868 d = rmx_val(m2,i,j)[k];
869 if (d == 0) {
870 ++zeroDivides;
871 rmx_lval(m1,i,j)[k] = 0;
872 } else
873 rmx_lval(m1,i,j)[k] /= d;
874 }
875 } else {
876 if (m2->ncomp == 1) {
877 const rmx_dtype d = rmx_val(m2,i,j)[0];
878 for (k = m1->ncomp; k--; )
879 rmx_lval(m1,i,j)[k] *= d;
880 } else
881 for (k = m1->ncomp; k--; )
882 rmx_lval(m1,i,j)[k] *= rmx_val(m2,i,j)[k];
883 }
884 if (zeroDivides) {
885 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
886 errno = ERANGE;
887 }
888 return(1);
889 }
890
891 /* Sum second matrix into first, applying scale factor beforehand */
892 int
893 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
894 {
895 double *mysf = NULL;
896 int i, j, k;
897
898 if (!msum | !madd || !msum->mtx | !madd->mtx |
899 (msum->nrows != madd->nrows) |
900 (msum->ncols != madd->ncols) |
901 (msum->ncomp != madd->ncomp))
902 return(0);
903 if (!sf) {
904 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
905 if (!mysf)
906 return(0);
907 for (k = msum->ncomp; k--; )
908 mysf[k] = 1;
909 sf = mysf;
910 }
911 i = rmx_newtype(msum->dtype, madd->dtype);
912 if (i)
913 msum->dtype = i;
914 else
915 rmx_addinfo(msum, rmx_mismatch_warn);
916 for (i = msum->nrows; i--; )
917 for (j = msum->ncols; j--; ) {
918 const rmx_dtype *da = rmx_val(madd,i,j);
919 rmx_dtype *ds = rmx_lval(msum,i,j);
920 for (k = msum->ncomp; k--; )
921 ds[k] += (rmx_dtype)sf[k] * da[k];
922 }
923 if (mysf)
924 free(mysf);
925 return(1);
926 }
927
928 /* Scale the given matrix by the indicated scalar component vector */
929 int
930 rmx_scale(RMATRIX *rm, const double sf[])
931 {
932 int i, j, k;
933
934 if (!rm | !sf || !rm->mtx)
935 return(0);
936 for (i = rm->nrows; i--; )
937 for (j = rm->ncols; j--; ) {
938 rmx_dtype *dp = rmx_lval(rm,i,j);
939 for (k = rm->ncomp; k--; )
940 dp[k] *= (rmx_dtype)sf[k];
941 }
942 if (rm->info)
943 rmx_addinfo(rm, "Applied scalar\n");
944 /* XXX: should record as exposure for COLR and SCOLR types? */
945 return(1);
946 }
947
948 /* Allocate new matrix and apply component transformation */
949 RMATRIX *
950 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
951 {
952 int i, j, ks, kd;
953 RMATRIX *dnew;
954
955 if (!msrc | (n <= 0) | !cmat || !msrc->mtx)
956 return(NULL);
957 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
958 if (!dnew)
959 return(NULL);
960 if (msrc->info) {
961 char buf[128];
962 sprintf(buf, "Applied %dx%d component transform\n",
963 dnew->ncomp, msrc->ncomp);
964 rmx_addinfo(dnew, msrc->info);
965 rmx_addinfo(dnew, buf);
966 }
967 dnew->dtype = msrc->dtype;
968 for (i = dnew->nrows; i--; )
969 for (j = dnew->ncols; j--; ) {
970 const rmx_dtype *ds = rmx_val(msrc,i,j);
971 for (kd = dnew->ncomp; kd--; ) {
972 double d = 0;
973 for (ks = msrc->ncomp; ks--; )
974 d += cmat[kd*msrc->ncomp + ks] * ds[ks];
975 rmx_lval(dnew,i,j)[kd] = (rmx_dtype)d;
976 }
977 }
978 return(dnew);
979 }
980