#!/usr/bin/perl -w
# RCSid $Id: genBSDF.pl,v 2.48 2014/07/09 15:03:11 greg Exp $
#
# Compute BSDF based on geometry and material description
#
#	G. Ward
#
use strict;
my $windoz = ($^O eq "MSWin32" or $^O eq "MSWin64");
use File::Temp qw/ :mktemp  /;
sub userror {
	print STDERR "Usage: genBSDF [-n Nproc][-c Nsamp][-t{3|4} Nlog2][-r \"ropts\"][-dim xmin xmax ymin ymax zmin zmax][{+|-}f][{+|-}b][{+|-}mgf][{+|-}geom units] [input ..]\n";
	exit 1;
}
my ($td,$radscn,$mgfscn,$octree,$cnttmp,$rmtmp);
if ($windoz) {
	my $tmploc = `echo \%TMP\%`;
	chomp($tmploc);
	$td = mkdtemp("$tmploc\\genBSDF.XXXXXX");
	$radscn = "$td\\device.rad";
	$mgfscn = "$td\\device.mgf";
	$octree = "$td\\device.oct";
	chomp $td;
	$rmtmp = "rmdir /S /Q $td";
} else{
	$td = mkdtemp("/tmp/genBSDF.XXXXXX");
	chomp $td;
	$radscn = "$td/device.rad";
	$mgfscn = "$td/device.mgf";
	$octree = "$td/device.oct";
	$rmtmp = "rm -rf $td";
}
my @savedARGV = @ARGV;
my $tensortree = 0;
my $ttlog2 = 4;
my $nsamp = 2000;
my $rtargs = "-w -ab 5 -ad 700 -lw 3e-6";
my $mgfin = 0;
my $geout = 1;
my $nproc = 1;
my $doforw = 0;
my $doback = 1;
my $pctcull = 90;
my $gunit = "meter";
my @dim;
# Get options
while ($#ARGV >= 0) {
	if ("$ARGV[0]" =~ /^[-+]m/) {
		$mgfin = ("$ARGV[0]" =~ /^\+/);
	} elsif ("$ARGV[0]" eq "-r") {
		$rtargs = "$rtargs $ARGV[1]";
		shift @ARGV;
	} elsif ("$ARGV[0]" =~ /^[-+]g/) {
		$geout = ("$ARGV[0]" =~ /^\+/);
		$gunit = $ARGV[1];
		if ($gunit !~ /^(?i)(meter|foot|inch|centimeter|millimeter)$/) {
			die "Illegal geometry unit '$gunit': must be meter, foot, inch, centimeter, or millimeter\n";
		}
		shift @ARGV;
	} elsif ("$ARGV[0]" =~ /^[-+]f/) {
		$doforw = ("$ARGV[0]" =~ /^\+/);
	} elsif ("$ARGV[0]" =~ /^[-+]b/) {
		$doback = ("$ARGV[0]" =~ /^\+/);
	} elsif ("$ARGV[0]" eq "-t") {
		# Use value < 0 for rttree_reduce bypass
		$pctcull = $ARGV[1];
		shift @ARGV;
	} elsif ("$ARGV[0]" =~ /^-t[34]$/) {
		$tensortree = substr($ARGV[0], 2, 1);
		$ttlog2 = $ARGV[1];
		shift @ARGV;
	} elsif ("$ARGV[0]" eq "-c") {
		$nsamp = $ARGV[1];
		shift @ARGV;
	} elsif ("$ARGV[0]" eq "-n") {
		$nproc = $ARGV[1];
		shift @ARGV;
	} elsif ("$ARGV[0]" =~ /^-d/) {
		userror() if ($#ARGV < 6);
		@dim = @ARGV[1..6];
		shift @ARGV for (1..6);
	} elsif ("$ARGV[0]" =~ /^[-+]./) {
		userror();
	} else {
		last;
	}
	shift @ARGV;
}
# Check that we're actually being asked to do something
die "Must have at least one of +forward or +backward\n" if (!$doforw && !$doback);
# Issue warning for unhandled reciprocity case
print STDERR "Warning: recommend both +forward and +backward with -t3" if
		($tensortree==3 && !($doforw && $doback));
# Get scene description and dimensions
if ( $mgfin ) {
	system qq{mgfilt "#,o,xf,c,cxy,cspec,cmix,m,sides,rd,td,rs,ts,ir,v,p,n,f,fh,sph,cyl,cone,prism,ring,torus" @ARGV > $mgfscn};
	die "Could not load MGF input\n" if ( $? );
	system "mgf2rad $mgfscn > $radscn";
} else {
	system "xform -e @ARGV > $radscn";
	die "Could not load Radiance input\n" if ( $? );
	system "rad2mgf $radscn > $mgfscn" if ( $geout );
}
if ($#dim != 5) {
	@dim = split ' ', `getbbox -h $radscn`;
}
print STDERR "Warning: Device extends into room\n" if ($dim[5] > 1e-5);
# Add receiver surfaces (rectangular)
my $fmodnm="receiver_face";
my $bmodnm="receiver_behind";
open(RADSCN, ">> $radscn");
print RADSCN "void glow $fmodnm\n0\n0\n4 1 1 1 0\n\n";
print RADSCN "$fmodnm source f_receiver\n0\n0\n4 0 0 1 180\n";
print RADSCN "void glow $bmodnm\n0\n0\n4 1 1 1 0\n\n";
print RADSCN "$bmodnm source b_receiver\n0\n0\n4 0 0 -1 180\n";
close RADSCN;
# Generate octree
system "oconv -w $radscn > $octree";
die "Could not compile scene\n" if ( $? );
# Output XML prologue
print
'
';
print "\n";
print
'System
BSDF
	
		Name
		Manufacturer
';
printf qq{\t\t%.6f\n}, $dim[5] - $dim[4];
printf qq{\t\t%.6f\n}, $dim[1] - $dim[0];
printf qq{\t\t%.6f\n}, $dim[3] - $dim[2];
print "\t\tOther\n";
print "\t\n";
# Output MGF description if requested
if ( $geout ) {
	print qq{\t\t\n};
	print qq{\t\t\n};
	printf "xf -t %.6f %.6f 0\n", -($dim[0]+$dim[1])/2, -($dim[2]+$dim[3])/2;
	open(MGFSCN, "< $mgfscn");
	while () { print $_; }
	close MGFSCN;
	print "xf\n";
	print "\n";
	print "\t\n";
}
# Set up surface sampling
my $nx = int(sqrt($nsamp*($dim[1]-$dim[0])/($dim[3]-$dim[2])) + 1);
my $ny = int($nsamp/$nx + 1);
$nsamp = $nx * $ny;
my $ns = 2**$ttlog2;
my (@pdiv, $disk2sq, $sq2disk, $tcal, $kcal);
# Create data segments (all the work happens here)
if ( $tensortree ) {
	do_tree_bsdf();
} else {
	do_matrix_bsdf();
}
# Output XML epilogue
print
'
';
# Clean up temporary files and exit
system $rmtmp;
#-------------- End of main program segment --------------#
#++++++++++++++ Tensor tree BSDF generation ++++++++++++++#
sub do_tree_bsdf {
# Shirley-Chiu mapping from unit square to disk
$sq2disk = 'in_square_a = 2*in_square_x - 1; ' .
	'in_square_b = 2*in_square_y - 1; ' .
	'in_square_rgn = if(in_square_a + in_square_b, ' .
				'if(in_square_a - in_square_b, 1, 2), ' .
				'if(in_square_b - in_square_a, 3, 4)); ' .
	'out_disk_r = .999995*select(in_square_rgn, in_square_a, in_square_b, ' .
				'-in_square_a, -in_square_b); ' .
	'out_disk_phi = PI/4 * select(in_square_rgn, ' .
					'in_square_b/in_square_a, ' .
					'2 - in_square_a/in_square_b, ' .
					'4 + in_square_b/in_square_a, ' .
					'if(in_square_b*in_square_b, ' .
						'6 - in_square_a/in_square_b, 0)); ' .
	'Dx = out_disk_r*cos(out_disk_phi); ' .
	'Dy = out_disk_r*sin(out_disk_phi); ' .
	'Dz = sqrt(1 - out_disk_r*out_disk_r);' ;
# Shirley-Chiu mapping from unit disk to square
$disk2sq = 'norm_radians(p) : if(-p - PI/4, p + 2*PI, p); ' .
	'in_disk_r = .999995*sqrt(Dx*Dx + Dy*Dy); ' .
	'in_disk_phi = norm_radians(atan2(Dy, Dx)); ' .
	'in_disk_rgn = floor((.999995*in_disk_phi + PI/4)/(PI/2)) + 1; ' .
	'out_square_a = select(in_disk_rgn, ' .
				'in_disk_r, ' .
				'(PI/2 - in_disk_phi)*in_disk_r/(PI/4), ' .
				'-in_disk_r, ' .
				'(in_disk_phi - 3*PI/2)*in_disk_r/(PI/4)); ' .
	'out_square_b = select(in_disk_rgn, ' .
				'in_disk_phi*in_disk_r/(PI/4), ' .
				'in_disk_r, ' .
				'(PI - in_disk_phi)*in_disk_r/(PI/4), ' .
				'-in_disk_r); ' .
	'out_square_x = (out_square_a + 1)/2; ' .
	'out_square_y = (out_square_b + 1)/2;';
# Announce ourselves in XML output
print "\t\n";
print "\t\tTensorTree$tensortree\n";
print "\t\n";
# Start rcontrib processes for compute each side
do_tree_rtcontrib(0) if ( $doback );
do_tree_rtcontrib(1) if ( $doforw );
}	# end of sub do_tree_bsdf()
# Run rcontrib process to generate tensor tree samples
sub do_tree_rtcontrib {
	my $forw = shift;
	my $cmd;
	my $matargs = "-m $bmodnm";
	if ( !$forw || !$doback || $tensortree==3 ) { $matargs .= " -m $fmodnm"; }
	if ($windoz) {
		$cmd = "rcontrib $rtargs -h -faa -fo -n $nproc -c $nsamp " .
			qq{-e "$disk2sq" -bn "$ns*$ns" } .
			qq{-b "$ns*floor(out_square_x*$ns)+floor(out_square_y*$ns)" } .
			"-o $td/%s.flt $matargs $octree";
	} else {
		$cmd = "rcontrib $rtargs -h -fff -fo -n $nproc -c $nsamp " .
			qq{-e "$disk2sq" -bn "$ns*$ns" } .
			qq{-b "$ns*floor(out_square_x*$ns)+floor(out_square_y*$ns)" } .
			"-o $td/%s.flt $matargs $octree";
	}
	if ( $tensortree == 3 ) {
		# Isotropic BSDF
		my $ns2 = $ns / 2;
		if ($windoz) {
			$cmd = "cnt $ns2 $ny $nx " .
				qq{| rcalc -e "r1=rand(.8681*recno-.673892)" } .
				qq{-e "r2=rand(-5.37138*recno+67.1737811)" } .
				qq{-e "r3=rand(+3.17603772*recno+83.766771)" } .
				qq{-e "Dx=1-2*(\$1+r1)/$ns;Dy:0;Dz=sqrt(1-Dx*Dx)" } .
				qq{-e "xp=(\$3+r2)*(($dim[1]-$dim[0])/$nx)+$dim[0]" } .
				qq{-e "yp=(\$2+r3)*(($dim[3]-$dim[2])/$ny)+$dim[2]" } .
				qq{-e "zp=$dim[5-$forw]" -e "myDz=Dz*($forw*2-1)" } .
				qq{-e "\$1=xp-Dx;\$2=yp-Dy;\$3=zp-myDz" } .
				qq{-e "\$4=Dx;\$5=Dy;\$6=myDz" } .
				"| $cmd";
		} else {
			$cmd = "cnt $ns2 $ny $nx " .
				qq{| rcalc -e "r1=rand(.8681*recno-.673892)" } .
				qq{-e "r2=rand(-5.37138*recno+67.1737811)" } .
				qq{-e "r3=rand(+3.17603772*recno+83.766771)" } .
				qq{-e "Dx=1-2*(\$1+r1)/$ns;Dy:0;Dz=sqrt(1-Dx*Dx)" } .
				qq{-e "xp=(\$3+r2)*(($dim[1]-$dim[0])/$nx)+$dim[0]" } .
				qq{-e "yp=(\$2+r3)*(($dim[3]-$dim[2])/$ny)+$dim[2]" } .
				qq{-e "zp=$dim[5-$forw]" -e "myDz=Dz*($forw*2-1)" } .
				qq{-e '\$1=xp-Dx;\$2=yp-Dy;\$3=zp-myDz' } .
				qq{-e '\$4=Dx;\$5=Dy;\$6=myDz' -of } .
				"| $cmd";
		}
	} else {
		# Anisotropic BSDF
		# Sample area vertically to improve load balance, since
		# shading systems usually have bilateral symmetry (L-R)
		if ($windoz) {
			$cmd = "cnt $ns $ns $ny $nx " .
				qq{| rcalc -e "r1=rand(.8681*recno-.673892)" } .
				qq{-e "r2=rand(-5.37138*recno+67.1737811)" } .
				qq{-e "r3=rand(3.17603772*recno+83.766771)" } .
				qq{-e "r4=rand(-2.3857833*recno-964.72738)" } .
				qq{-e "in_square_x=(\$1+r1)/$ns" } .
				qq{-e "in_square_y=(\$2+r2)/$ns" -e "$sq2disk" } .
				qq{-e "xp=(\$4+r3)*(($dim[1]-$dim[0])/$nx)+$dim[0]" } .
				qq{-e "yp=(\$3+r4)*(($dim[3]-$dim[2])/$ny)+$dim[2]" } .
				qq{-e "zp=$dim[5-$forw]" -e "myDz=Dz*($forw*2-1)" } .
				qq{-e "\$1=xp-Dx;\$2=yp-Dy;\$3=zp-myDz" } .
				qq{-e "\$4=Dx;\$5=Dy;\$6=myDz" } .
				"| $cmd";
		} else {
			$cmd = "cnt $ns $ns $ny $nx " .
				qq{| rcalc -e "r1=rand(.8681*recno-.673892)" } .
				qq{-e "r2=rand(-5.37138*recno+67.1737811)" } .
				qq{-e "r3=rand(3.17603772*recno+83.766771)" } .
				qq{-e "r4=rand(-2.3857833*recno-964.72738)" } .
				qq{-e "in_square_x=(\$1+r1)/$ns" } .
				qq{-e "in_square_y=(\$2+r2)/$ns" -e "$sq2disk" } .
				qq{-e "xp=(\$4+r3)*(($dim[1]-$dim[0])/$nx)+$dim[0]" } .
				qq{-e "yp=(\$3+r4)*(($dim[3]-$dim[2])/$ny)+$dim[2]" } .
				qq{-e "zp=$dim[5-$forw]" -e "myDz=Dz*($forw*2-1)" } .
				qq{-e '\$1=xp-Dx;\$2=yp-Dy;\$3=zp-myDz' } .
				qq{-e '\$4=Dx;\$5=Dy;\$6=myDz' -of } .
				"| $cmd";
		}
	}
# print STDERR "Starting: $cmd\n";
	system "$cmd" || die "Failure running rcontrib";
	ttree_out($forw);
}	# end of do_tree_rtcontrib()
# Simplify and output tensor tree results
sub ttree_out {
	my $forw = shift;
	my $side = ("Back","Front")[$forw];
	my $cmd;
# Only output one transmitted anisotropic distribution, preferring backwards
if ( !$forw || !$doback || $tensortree==3 ) {
print
'	
		System
		Visible
		CIE Illuminant D65 1nm.ssp
		ASTM E308 1931 Y.dsp
		' ;
print "\t\t\tTransmission $side\n";
print
'			LBNL/Shirley-Chiu
			BTDF
			
';
if ($windoz) {
	$cmd = qq{rcalc -e "Omega:PI/($ns*$ns)" } .
		q{-e "$1=(0.265*$1+0.670*$2+0.065*$3)/Omega" };
} else {
	$cmd = "rcalc -if3 -e 'Omega:PI/($ns*$ns)' " .
		q{-e '$1=(0.265*$1+0.670*$2+0.065*$3)/Omega' };
}
if ($pctcull >= 0) {
	if ($windoz) {
		$cmd = "rcollate -h -oc 1 $td/" . ($bmodnm,$fmodnm)[$forw] . ".flt | " .
				$cmd .
				"| rttree_reduce -h -fa  -t $pctcull -r $tensortree -g $ttlog2";
	} else {
		$cmd .= "-of $td/" . ($bmodnm,$fmodnm)[$forw] . ".flt " .
				" | rttree_reduce -h -ff -t $pctcull -r $tensortree -g $ttlog2";
	}
	system "$cmd" || die "Failure running rttree_reduce";
} else {
	if ($windoz) {
		$cmd = "rcollate -h -oc 1 $td/" . ($bmodnm,$fmodnm)[$forw] . ".flt | " .
				$cmd ;
	} else {
		$cmd .= "$td/" . ($bmodnm,$fmodnm)[$forw] . ".flt";
	}
	print "{\n";
	system "$cmd" || die "Failure running rcalc";
	for (my $i = ($tensortree==3)*$ns*$ns*$ns/2; $i-- > 0; ) {
		print "0\n";
	}
	print "}\n";
}
print
'			
		
	
';
}
# Output reflection
print
'	
		System
		Visible
		CIE Illuminant D65 1nm.ssp
		ASTM E308 1931 Y.dsp
		
';
print "\t\t\tReflection $side\n";
print
'			LBNL/Shirley-Chiu
			BTDF
			
';
if ($windoz) {
	$cmd = qq{rcalc -e "Omega:PI/($ns*$ns)" } .
		q{-e "$1=(0.265*$1+0.670*$2+0.065*$3)/Omega" };
}else {
	$cmd = "rcalc -if3 -e 'Omega:PI/($ns*$ns)' " .
		q{-e '$1=(0.265*$1+0.670*$2+0.065*$3)/Omega' };		
}
if ($pctcull >= 0) {
	if ($windoz) {
		$cmd = "rcollate -h -oc 1 $td/" . ($fmodnm,$bmodnm)[$forw] . ".flt |" .
				$cmd .
				" | rttree_reduce -a -h -fa -t $pctcull -r $tensortree -g $ttlog2";
	} else {
		$cmd .= "-of $td/" . ($fmodnm,$bmodnm)[$forw] . ".flt " .
				"| rttree_reduce -a -h -ff -t $pctcull -r $tensortree -g $ttlog2";
	}
	system "$cmd" || die "Failure running rttree_reduce";
} else {
	if ($windoz) {
		$cmd = "rcollate -h -oc 1 $td/" . ($fmodnm,$bmodnm)[$forw] . ".flt |" .
				$cmd ;
	} else {
		$cmd .= "$td/" . ($fmodnm,$bmodnm)[$forw] . ".flt";
	}
	print "{\n";
	system "$cmd" || die "Failure running rcalc";
	for (my $i = ($tensortree==3)*$ns*$ns*$ns/2; $i-- > 0; ) {
		print "0\n";
	}
	print "}\n";
}
print
'			
		
	
';
}	# end of ttree_out()
#------------- End of do_tree_bsdf() & subroutines -------------#
#+++++++++++++++ Klems matrix BSDF generation +++++++++++++++#
sub do_matrix_bsdf {
# Set up sampling of portal
# Kbin to produce incident direction in full Klems basis with (x1,x2) randoms
$tcal = 'DEGREE : PI/180; ' .
	'sq(x) : x*x; ' .
	'Kpola(r) : select(r+1, 0, 5, 15, 25, 35, 45, 55, 65, 75, 90); ' .
	'Knaz(r) : select(r, 1, 8, 16, 20, 24, 24, 24, 16, 12); ' .
	'Kaccum(r) : if(r-.5, Knaz(r) + Kaccum(r-1), 0); ' .
	'Kmax : Kaccum(Knaz(0)); ' .
	'Kfindrow(r, rem) : if(rem-Knaz(r)+.5, Kfindrow(r+1, rem-Knaz(r)), r); ' .
	'Krow = if(Kbin-(Kmax-.5), 0, Kfindrow(1, Kbin)); ' .
	'Kcol = Kbin - Kaccum(Krow-1); ' .
	'Kazi = 360*DEGREE * (Kcol + (.5 - x2)) / Knaz(Krow); ' .
	'Kpol = DEGREE * (x1*Kpola(Krow) + (1-x1)*Kpola(Krow-1)); ' .
	'sin_kpol = sin(Kpol); ' .
	'Dx = cos(Kazi)*sin_kpol; ' .
	'Dy = sin(Kazi)*sin_kpol; ' .
	'Dz = sqrt(1 - sin_kpol*sin_kpol); ' .
	'KprojOmega = PI * if(Kbin-.5, ' .
	'(sq(cos(Kpola(Krow-1)*DEGREE)) - sq(cos(Kpola(Krow)*DEGREE)))/Knaz(Krow), ' .
	'1 - sq(cos(Kpola(1)*DEGREE))); ';
# Compute Klems bin from exiting ray direction (forward or backward)
$kcal = 'DEGREE : PI/180; ' .
	'abs(x) : if(x, x, -x); ' .
	'Acos(x) : if(x-1, 0, if(-1-x, PI, acos(x)))/DEGREE; ' .
	'posangle(a) : if(-a, a + 2*PI, a); ' .
	'Atan2(y,x) : posangle(atan2(y,x))/DEGREE; ' .
	'kpola(r) : select(r, 5, 15, 25, 35, 45, 55, 65, 75, 90); ' .
	'knaz(r) : select(r, 1, 8, 16, 20, 24, 24, 24, 16, 12); ' .
	'kaccum(r) : if(r-.5, knaz(r) + kaccum(r-1), 0); ' .
	'kfindrow(r, pol) : if(r-kpola(0)+.5, r, ' .
	'if(pol-kpola(r), kfindrow(r+1, pol), r) ); ' .
	'kazn(azi,inc) : if((360-.5*inc)-azi, floor((azi+.5*inc)/inc), 0); ' .
	'kbin2(pol,azi) = select(kfindrow(1, pol), ' .
	'kazn(azi,360/knaz(1)), ' .
	'kaccum(1) + kazn(azi,360/knaz(2)), ' .
	'kaccum(2) + kazn(azi,360/knaz(3)), ' .
	'kaccum(3) + kazn(azi,360/knaz(4)), ' .
	'kaccum(4) + kazn(azi,360/knaz(5)), ' .
	'kaccum(5) + kazn(azi,360/knaz(6)), ' .
	'kaccum(6) + kazn(azi,360/knaz(7)), ' .
	'kaccum(7) + kazn(azi,360/knaz(8)), ' .
	'kaccum(8) + kazn(azi,360/knaz(9)) ' .
	'); ' .
	'kbin = kbin2(Acos(abs(Dz)),Atan2(Dy,Dx));';
my $ndiv = 145;
# Compute scattering data using rcontrib
my @tfarr;
my @rfarr;
my @tbarr;
my @rbarr;
my (@data,@line); # for windows
my $cmd;
my $rtcmd;
my $rccmd;
if ($windoz) {
	$rtcmd = "rcontrib $rtargs -h -fo -n $nproc -c $nsamp " .
		qq{-e "$kcal" -b kbin -bn $ndiv } .
		qq{-o "$td\\%s.flt" -m $fmodnm -m $bmodnm $octree };
	$rccmd = qq{rcalc -e "$tcal" } .
		qq{-e "mod(n,d):n-floor(n/d)*d" -e "Kbin=mod(recno-.999,$ndiv)" } .
		q{ -e "$1=(0.265*$1+0.670*$2+0.065*$3)/KprojOmega" };
} else {
	$rtcmd = "rcontrib $rtargs -h -ff -fo -n $nproc -c $nsamp " .
		"-e '$kcal' -b kbin -bn $ndiv " .
		"-o '$td/%s.flt' -m $fmodnm -m $bmodnm $octree";
	$rccmd = "rcalc -e '$tcal' " .
		"-e 'mod(n,d):n-floor(n/d)*d' -e 'Kbin=mod(recno-.999,$ndiv)' " .
		q{-if3 -e '$1=(0.265*$1+0.670*$2+0.065*$3)/KprojOmega' };
}
if ( $doforw ) {
	if ($windoz) {
	$cmd = qq{cnt $ndiv $ny $nx | rcalc -e "$tcal" } .
		qq{-e "xp=(\$3+rand(.12*recno+288))*(($dim[1]-$dim[0])/$nx)+$dim[0]" } .
		qq{-e "yp=(\$2+rand(.37*recno-44))*(($dim[3]-$dim[2])/$ny)+$dim[2]" } .
		qq{-e "zp:$dim[4]" } .
		q{-e "Kbin=$1;x1=rand(2.75*recno+3.1);x2=rand(-2.01*recno-3.37)" } .
		q{-e "$1=xp-Dx;$2=yp-Dy;$3=zp-Dz;$4=Dx;$5=Dy;$6=Dz" } .
		"| $rtcmd ";
	} else {
	$cmd = "cnt $ndiv $ny $nx | rcalc -of -e '$tcal' " .
		"-e 'xp=(\$3+rand(.12*recno+288))*(($dim[1]-$dim[0])/$nx)+$dim[0]' " .
		"-e 'yp=(\$2+rand(.37*recno-44))*(($dim[3]-$dim[2])/$ny)+$dim[2]' " .
		"-e 'zp:$dim[4]' " .
		q{-e 'Kbin=$1;x1=rand(2.75*recno+3.1);x2=rand(-2.01*recno-3.37)' } .
		q{-e '$1=xp-Dx;$2=yp-Dy;$3=zp-Dz;$4=Dx;$5=Dy;$6=Dz' } .
		"| $rtcmd";
	}
system "$cmd" || die "Failure running: $cmd\n";
if ($windoz) {
	@tfarr = `rcollate -h -oc 1 $td\\$fmodnm.flt | $rccmd`;
} else {
	@tfarr = `$rccmd $td/$fmodnm.flt`;
}
die "Failure running: $rccmd $td/$fmodnm.flt\n" if ( $? );
if ($windoz) {
	@rfarr = `rcollate -h -oc 1 $td\\$bmodnm.flt | $rccmd`;
} else {
	@rfarr = `$rccmd $td/$bmodnm.flt`;
}
die "Failure running: $rccmd $td/$bmodnm.flt\n" if ( $? );
}
if ( $doback ) {
	if ($windoz) {
	$cmd = qq{cnt $ndiv $ny $nx | rcalc -e "$tcal" } .
		qq{-e "xp=(\$3+rand(.35*recno-15))*(($dim[1]-$dim[0])/$nx)+$dim[0]" } .
		qq{-e "yp=(\$2+rand(.86*recno+11))*(($dim[3]-$dim[2])/$ny)+$dim[2]" } .
		qq{-e "zp:$dim[5]" } .
		q{-e "Kbin=$1;x1=rand(1.21*recno+2.75);x2=rand(-3.55*recno-7.57)" } .
		q{-e "$1=xp-Dx;$2=yp-Dy;$3=zp+Dz;$4=Dx;$5=Dy;$6=-Dz" } .
		"| $rtcmd";
	} else {
	$cmd = "cnt $ndiv $ny $nx | rcalc -of -e '$tcal' " .
		"-e 'xp=(\$3+rand(.35*recno-15))*(($dim[1]-$dim[0])/$nx)+$dim[0]' " .
		"-e 'yp=(\$2+rand(.86*recno+11))*(($dim[3]-$dim[2])/$ny)+$dim[2]' " .
		"-e 'zp:$dim[5]' " .
		q{-e 'Kbin=$1;x1=rand(1.21*recno+2.75);x2=rand(-3.55*recno-7.57)' } .
		q{-e '$1=xp-Dx;$2=yp-Dy;$3=zp+Dz;$4=Dx;$5=Dy;$6=-Dz' } .
		"| $rtcmd";
	}
system "$cmd" || die "Failure running: $cmd\n";
if ($windoz) {
	@tbarr = `rcollate -h -oc 1 $td\\$bmodnm.flt | $rccmd`;
} else {
	@tbarr = `$rccmd $td/$bmodnm.flt`;
}
die "Failure running: $rccmd $td/$bmodnm.flt\n" if ( $? );
chomp(@tbarr);
if ($windoz) {
	@rbarr = `rcollate -h -oc 1 $td\\$fmodnm.flt | $rccmd`;
} else {
	@rbarr = `$rccmd $td/$fmodnm.flt`;
}
die "Failure running: $rccmd $td/$fmodnm.flt\n" if ( $? );
chomp(@rbarr);
}
# Output angle basis
print
'	
		Columns
		
			LBNL/Klems Full
			
			0
			1
			
				0
				5
			
			
			
			10
			8
			
				5
				15
			
			
			
			20
			16
			
				15
				25
			
			
			
			30
			20
			
				25
				35
			
			
			
			40
			24
			
				35
				45
			
			
			
			50
			24
			
				45
				55
			
			
			
			60
			24
			
				55
				65
			
			
			
			70
			16
			
				65
				75
			
			
			
			82.5
			12
			
				75
				90
			
			
		
	
';
if ( $doforw ) {
print
'	
		System
		Visible
		CIE Illuminant D65 1nm.ssp
		ASTM E308 1931 Y.dsp
		
			Transmission Front
			LBNL/Klems Full
			LBNL/Klems Full
			BTDF
			
';
# Output front transmission (transposed order)
for (my $od = 0; $od < $ndiv; $od++) {
	for (my $id = 0; $id < $ndiv; $id++) {
		chomp $tfarr[$ndiv*$id + $od];
		print $tfarr[$ndiv*$id + $od], ",\t";
	}
	print "\n";
}
print
'			
		
	
	
		System
		Visible
		CIE Illuminant D65 1nm.ssp
		ASTM E308 1931 Y.dsp
		
			Reflection Front
			LBNL/Klems Full
			LBNL/Klems Full
			BTDF
			
';
# Output front reflection (transposed order)
for (my $od = 0; $od < $ndiv; $od++) {
	for (my $id = 0; $id < $ndiv; $id++) {
		chomp $rfarr[$ndiv*$id + $od];
		print $rfarr[$ndiv*$id + $od], ",\t";
	}
	print "\n";
}
print
'			
		
	
';
}
if ( $doback ) {
print
'	
		System
		Visible
		CIE Illuminant D65 1nm.ssp
		ASTM E308 1931 Y.dsp
		
			Transmission Back
			LBNL/Klems Full
			LBNL/Klems Full
			BTDF
			
';
# Output back transmission (transposed order)
for (my $od = 0; $od < $ndiv; $od++) {
	for (my $id = 0; $id < $ndiv; $id++) {
		chomp $tbarr[$ndiv*$id + $od];
		print $tbarr[$ndiv*$id + $od], ",\t";
	}
	print "\n";
}
print
'			
		
	
	
		System
		Visible
		CIE Illuminant D65 1nm.ssp
		ASTM E308 1931 Y.dsp
		
			Reflection Back
			LBNL/Klems Full
			LBNL/Klems Full
			BTDF
			
';
# Output back reflection (transposed order)
for (my $od = 0; $od < $ndiv; $od++) {
	for (my $id = 0; $id < $ndiv; $id++) {
		chomp $rbarr[$ndiv*$id + $od];
		print $rbarr[$ndiv*$id + $od], ",\t";
	}
	print "\n";
}
print
'			
		
	
';
}
}
#------------- End of do_matrix_bsdf() --------------#