| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: srcsupp.c,v 2.24 2022/08/04 22:43:46 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Support routines for source objects and materials
|
| 6 |
*
|
| 7 |
* External symbols declared in source.h
|
| 8 |
*/
|
| 9 |
|
| 10 |
#include "copyright.h"
|
| 11 |
|
| 12 |
#include "ray.h"
|
| 13 |
|
| 14 |
#include "otypes.h"
|
| 15 |
|
| 16 |
#include "source.h"
|
| 17 |
|
| 18 |
#include "cone.h"
|
| 19 |
|
| 20 |
#include "face.h"
|
| 21 |
|
| 22 |
#define SRCINC 32 /* realloc increment for array */
|
| 23 |
|
| 24 |
SRCREC *source = NULL; /* our list of sources */
|
| 25 |
int nsources = 0; /* the number of sources */
|
| 26 |
|
| 27 |
SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
|
| 28 |
|
| 29 |
|
| 30 |
void
|
| 31 |
initstypes(void) /* initialize source dispatch table */
|
| 32 |
{
|
| 33 |
extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
|
| 34 |
static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
|
| 35 |
static SOBJECT ssobj = {ssetsrc, nopart};
|
| 36 |
static SOBJECT sphsobj = {sphsetsrc, nopart};
|
| 37 |
static SOBJECT cylsobj = {cylsetsrc, cylpart};
|
| 38 |
static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
|
| 39 |
|
| 40 |
sfun[MAT_MIRROR].mf = &mirror_vs;
|
| 41 |
sfun[MAT_DIRECT1].mf = &direct1_vs;
|
| 42 |
sfun[MAT_DIRECT2].mf = &direct2_vs;
|
| 43 |
sfun[OBJ_FACE].of = &fsobj;
|
| 44 |
sfun[OBJ_SOURCE].of = &ssobj;
|
| 45 |
sfun[OBJ_SPHERE].of = &sphsobj;
|
| 46 |
sfun[OBJ_CYLINDER].of = &cylsobj;
|
| 47 |
sfun[OBJ_RING].of = &rsobj;
|
| 48 |
}
|
| 49 |
|
| 50 |
|
| 51 |
int
|
| 52 |
newsource(void) /* allocate new source in our array */
|
| 53 |
{
|
| 54 |
if (nsources == 0)
|
| 55 |
source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
|
| 56 |
else if (nsources%SRCINC == 0)
|
| 57 |
source = (SRCREC *)realloc((void *)source,
|
| 58 |
(unsigned)(nsources+SRCINC)*sizeof(SRCREC));
|
| 59 |
if (source == NULL)
|
| 60 |
return(-1);
|
| 61 |
source[nsources].sflags = 0;
|
| 62 |
source[nsources].nhits = 1;
|
| 63 |
source[nsources].ntests = 2; /* initial hit probability = 50% */
|
| 64 |
#if SHADCACHE
|
| 65 |
source[nsources].obscache = NULL;
|
| 66 |
#endif
|
| 67 |
return(nsources++);
|
| 68 |
}
|
| 69 |
|
| 70 |
|
| 71 |
void
|
| 72 |
setflatss( /* set sampling for a flat source */
|
| 73 |
SRCREC *src
|
| 74 |
)
|
| 75 |
{
|
| 76 |
double mult;
|
| 77 |
int i;
|
| 78 |
|
| 79 |
getperpendicular(src->ss[SU], src->snorm, rand_samp);
|
| 80 |
mult = .5 * sqrt( src->ss2 );
|
| 81 |
for (i = 0; i < 3; i++)
|
| 82 |
src->ss[SU][i] *= mult;
|
| 83 |
fcross(src->ss[SV], src->snorm, src->ss[SU]);
|
| 84 |
}
|
| 85 |
|
| 86 |
|
| 87 |
void
|
| 88 |
fsetsrc( /* set a face as a source */
|
| 89 |
SRCREC *src,
|
| 90 |
OBJREC *so
|
| 91 |
)
|
| 92 |
{
|
| 93 |
FACE *f;
|
| 94 |
int i, j;
|
| 95 |
double d;
|
| 96 |
|
| 97 |
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
|
| 98 |
src->so = so;
|
| 99 |
/* get the face */
|
| 100 |
f = getface(so);
|
| 101 |
if (f->area == 0.)
|
| 102 |
objerror(so, USER, "zero source area");
|
| 103 |
/* find the center */
|
| 104 |
for (j = 0; j < 3; j++) {
|
| 105 |
src->sloc[j] = 0.0;
|
| 106 |
for (i = 0; i < f->nv; i++)
|
| 107 |
src->sloc[j] += VERTEX(f,i)[j];
|
| 108 |
src->sloc[j] /= (double)f->nv;
|
| 109 |
}
|
| 110 |
if (!inface(src->sloc, f))
|
| 111 |
objerror(so, USER, "cannot hit source center");
|
| 112 |
src->sflags |= SFLAT;
|
| 113 |
VCOPY(src->snorm, f->norm);
|
| 114 |
src->ss2 = f->area;
|
| 115 |
/* find maximum radius */
|
| 116 |
src->srad = 0.;
|
| 117 |
for (i = 0; i < f->nv; i++) {
|
| 118 |
d = dist2(VERTEX(f,i), src->sloc);
|
| 119 |
if (d > src->srad)
|
| 120 |
src->srad = d;
|
| 121 |
}
|
| 122 |
src->srad = sqrt(src->srad);
|
| 123 |
/* compute size vectors */
|
| 124 |
if (f->nv == 4) { /* parallelogram case */
|
| 125 |
for (j = 0; j < 3; j++) {
|
| 126 |
src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
|
| 127 |
src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
|
| 128 |
}
|
| 129 |
} else if (f->nv == 3) { /* triangle case */
|
| 130 |
int near0 = 2;
|
| 131 |
double dmin = dist2line(src->sloc, VERTEX(f,2), VERTEX(f,0));
|
| 132 |
for (i = 0; i < 2; i++) {
|
| 133 |
double d2 = dist2line(src->sloc, VERTEX(f,i), VERTEX(f,i+1));
|
| 134 |
if (d2 >= dmin)
|
| 135 |
continue;
|
| 136 |
near0 = i;
|
| 137 |
dmin = d2; /* radius = min distance */
|
| 138 |
}
|
| 139 |
if (dmin < .08*f->area)
|
| 140 |
objerror(so, WARNING, "triangular source with poor aspect");
|
| 141 |
i = (near0 + 1) % 3;
|
| 142 |
for (j = 0; j < 3; j++)
|
| 143 |
src->ss[SU][j] = VERTEX(f,i)[j] - VERTEX(f,near0)[j];
|
| 144 |
normalize(src->ss[SU]);
|
| 145 |
dmin = sqrt(dmin);
|
| 146 |
for (j = 0; j < 3; j++)
|
| 147 |
src->ss[SU][j] *= dmin;
|
| 148 |
fcross(src->ss[SV], f->norm, src->ss[SU]);
|
| 149 |
} else
|
| 150 |
setflatss(src); /* hope for convex! */
|
| 151 |
}
|
| 152 |
|
| 153 |
|
| 154 |
void
|
| 155 |
ssetsrc( /* set a source as a source */
|
| 156 |
SRCREC *src,
|
| 157 |
OBJREC *so
|
| 158 |
)
|
| 159 |
{
|
| 160 |
double theta;
|
| 161 |
|
| 162 |
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
|
| 163 |
src->so = so;
|
| 164 |
if (so->oargs.nfargs != 4)
|
| 165 |
objerror(so, USER, "bad arguments");
|
| 166 |
src->sflags |= (SDISTANT|SCIR);
|
| 167 |
VCOPY(src->sloc, so->oargs.farg);
|
| 168 |
if (normalize(src->sloc) == 0.0)
|
| 169 |
objerror(so, USER, "zero direction");
|
| 170 |
theta = PI/180.0/2.0 * so->oargs.farg[3];
|
| 171 |
if (theta <= FTINY)
|
| 172 |
objerror(so, USER, "zero size");
|
| 173 |
src->ss2 = 2.0*PI * (1.0 - cos(theta));
|
| 174 |
/* the following is approximate */
|
| 175 |
src->srad = sqrt(src->ss2/PI);
|
| 176 |
VCOPY(src->snorm, src->sloc);
|
| 177 |
setflatss(src); /* hey, whatever works */
|
| 178 |
src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
|
| 179 |
}
|
| 180 |
|
| 181 |
|
| 182 |
void
|
| 183 |
sphsetsrc( /* set a sphere as a source */
|
| 184 |
SRCREC *src,
|
| 185 |
OBJREC *so
|
| 186 |
)
|
| 187 |
{
|
| 188 |
int i;
|
| 189 |
|
| 190 |
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
|
| 191 |
src->so = so;
|
| 192 |
if (so->oargs.nfargs != 4)
|
| 193 |
objerror(so, USER, "bad # arguments");
|
| 194 |
if (so->oargs.farg[3] <= FTINY)
|
| 195 |
objerror(so, USER, "illegal source radius");
|
| 196 |
src->sflags |= SCIR;
|
| 197 |
VCOPY(src->sloc, so->oargs.farg);
|
| 198 |
src->srad = so->oargs.farg[3];
|
| 199 |
src->ss2 = PI * src->srad * src->srad;
|
| 200 |
memset(src->ss, 0, sizeof(src->ss));
|
| 201 |
for (i = 0; i < 3; i++)
|
| 202 |
src->ss[i][i] = 0.7236 * so->oargs.farg[3];
|
| 203 |
}
|
| 204 |
|
| 205 |
|
| 206 |
void
|
| 207 |
rsetsrc( /* set a ring (disk) as a source */
|
| 208 |
SRCREC *src,
|
| 209 |
OBJREC *so
|
| 210 |
)
|
| 211 |
{
|
| 212 |
CONE *co;
|
| 213 |
|
| 214 |
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
|
| 215 |
src->so = so;
|
| 216 |
/* get the ring */
|
| 217 |
co = getcone(so, 0);
|
| 218 |
if (co == NULL)
|
| 219 |
objerror(so, USER, "illegal source");
|
| 220 |
if (CO_R1(co) <= FTINY)
|
| 221 |
objerror(so, USER, "illegal source radius");
|
| 222 |
VCOPY(src->sloc, CO_P0(co));
|
| 223 |
if (CO_R0(co) > 0.0)
|
| 224 |
objerror(so, USER, "cannot hit source center");
|
| 225 |
src->sflags |= (SFLAT|SCIR);
|
| 226 |
VCOPY(src->snorm, co->ad);
|
| 227 |
src->srad = CO_R1(co);
|
| 228 |
src->ss2 = PI * src->srad * src->srad;
|
| 229 |
setflatss(src);
|
| 230 |
}
|
| 231 |
|
| 232 |
|
| 233 |
void
|
| 234 |
cylsetsrc( /* set a cylinder as a source */
|
| 235 |
SRCREC *src,
|
| 236 |
OBJREC *so
|
| 237 |
)
|
| 238 |
{
|
| 239 |
CONE *co;
|
| 240 |
int i;
|
| 241 |
|
| 242 |
src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
|
| 243 |
src->so = so;
|
| 244 |
/* get the cylinder */
|
| 245 |
co = getcone(so, 0);
|
| 246 |
if (co == NULL)
|
| 247 |
objerror(so, USER, "illegal source");
|
| 248 |
if (CO_R0(co) <= FTINY)
|
| 249 |
objerror(so, USER, "illegal source radius");
|
| 250 |
if (CO_R0(co) > .2*co->al) /* heuristic constraint */
|
| 251 |
objerror(so, WARNING, "source aspect too small");
|
| 252 |
src->sflags |= SCYL;
|
| 253 |
for (i = 0; i < 3; i++)
|
| 254 |
src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
|
| 255 |
src->srad = .5*co->al;
|
| 256 |
src->ss2 = 2.*CO_R0(co)*co->al;
|
| 257 |
/* set sampling vectors */
|
| 258 |
for (i = 0; i < 3; i++)
|
| 259 |
src->ss[SU][i] = .5 * co->al * co->ad[i];
|
| 260 |
getperpendicular(src->ss[SW], co->ad, rand_samp);
|
| 261 |
for (i = 0; i < 3; i++)
|
| 262 |
src->ss[SW][i] *= .8559 * CO_R0(co);
|
| 263 |
fcross(src->ss[SV], src->ss[SW], co->ad);
|
| 264 |
}
|
| 265 |
|
| 266 |
|
| 267 |
SPOT *
|
| 268 |
makespot( /* make a spotlight */
|
| 269 |
OBJREC *m
|
| 270 |
)
|
| 271 |
{
|
| 272 |
SPOT *ns;
|
| 273 |
|
| 274 |
if ((ns = (SPOT *)m->os) != NULL)
|
| 275 |
return(ns);
|
| 276 |
if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
|
| 277 |
return(NULL);
|
| 278 |
if (m->oargs.farg[3] <= FTINY)
|
| 279 |
objerror(m, USER, "zero angle");
|
| 280 |
ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
|
| 281 |
VCOPY(ns->aim, m->oargs.farg+4);
|
| 282 |
if ((ns->flen = normalize(ns->aim)) == 0.0)
|
| 283 |
objerror(m, USER, "zero focus vector");
|
| 284 |
m->os = (char *)ns;
|
| 285 |
return(ns);
|
| 286 |
}
|
| 287 |
|
| 288 |
|
| 289 |
int
|
| 290 |
spotout( /* check if we're outside spot region */
|
| 291 |
RAY *r,
|
| 292 |
SPOT *s
|
| 293 |
)
|
| 294 |
{
|
| 295 |
double d;
|
| 296 |
FVECT vd;
|
| 297 |
|
| 298 |
if (s == NULL)
|
| 299 |
return(0);
|
| 300 |
if (s->flen < -FTINY) { /* distant source */
|
| 301 |
vd[0] = s->aim[0] - r->rorg[0];
|
| 302 |
vd[1] = s->aim[1] - r->rorg[1];
|
| 303 |
vd[2] = s->aim[2] - r->rorg[2];
|
| 304 |
d = DOT(r->rdir,vd);
|
| 305 |
/* wrong side?
|
| 306 |
if (d <= FTINY)
|
| 307 |
return(1); */
|
| 308 |
d = DOT(vd,vd) - d*d;
|
| 309 |
if (PI*d > s->siz)
|
| 310 |
return(1); /* out */
|
| 311 |
return(0); /* OK */
|
| 312 |
}
|
| 313 |
/* local source */
|
| 314 |
if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
|
| 315 |
return(1); /* out */
|
| 316 |
return(0); /* OK */
|
| 317 |
}
|
| 318 |
|
| 319 |
|
| 320 |
double
|
| 321 |
fgetmaxdisk( /* get center and squared radius of face */
|
| 322 |
FVECT ocent,
|
| 323 |
OBJREC *op
|
| 324 |
)
|
| 325 |
{
|
| 326 |
double maxrad2;
|
| 327 |
double d;
|
| 328 |
int i, j;
|
| 329 |
FACE *f;
|
| 330 |
|
| 331 |
f = getface(op);
|
| 332 |
if (f->area == 0.)
|
| 333 |
return(0.);
|
| 334 |
for (i = 0; i < 3; i++) {
|
| 335 |
ocent[i] = 0.;
|
| 336 |
for (j = 0; j < f->nv; j++)
|
| 337 |
ocent[i] += VERTEX(f,j)[i];
|
| 338 |
ocent[i] /= (double)f->nv;
|
| 339 |
}
|
| 340 |
d = DOT(ocent,f->norm);
|
| 341 |
for (i = 0; i < 3; i++)
|
| 342 |
ocent[i] += (f->offset - d)*f->norm[i];
|
| 343 |
maxrad2 = 0.;
|
| 344 |
for (j = 0; j < f->nv; j++) {
|
| 345 |
d = dist2(VERTEX(f,j), ocent);
|
| 346 |
if (d > maxrad2)
|
| 347 |
maxrad2 = d;
|
| 348 |
}
|
| 349 |
return(maxrad2);
|
| 350 |
}
|
| 351 |
|
| 352 |
|
| 353 |
double
|
| 354 |
rgetmaxdisk( /* get center and squared radius of ring */
|
| 355 |
FVECT ocent,
|
| 356 |
OBJREC *op
|
| 357 |
)
|
| 358 |
{
|
| 359 |
CONE *co;
|
| 360 |
|
| 361 |
co = getcone(op, 0);
|
| 362 |
if (co == NULL)
|
| 363 |
return(0.);
|
| 364 |
VCOPY(ocent, CO_P0(co));
|
| 365 |
return(CO_R1(co)*CO_R1(co));
|
| 366 |
}
|
| 367 |
|
| 368 |
|
| 369 |
double
|
| 370 |
fgetplaneq( /* get plane equation for face */
|
| 371 |
FVECT nvec,
|
| 372 |
OBJREC *op
|
| 373 |
)
|
| 374 |
{
|
| 375 |
FACE *fo;
|
| 376 |
|
| 377 |
fo = getface(op);
|
| 378 |
VCOPY(nvec, fo->norm);
|
| 379 |
return(fo->offset);
|
| 380 |
}
|
| 381 |
|
| 382 |
|
| 383 |
double
|
| 384 |
rgetplaneq( /* get plane equation for ring */
|
| 385 |
FVECT nvec,
|
| 386 |
OBJREC *op
|
| 387 |
)
|
| 388 |
{
|
| 389 |
CONE *co;
|
| 390 |
|
| 391 |
co = getcone(op, 0);
|
| 392 |
if (co == NULL) {
|
| 393 |
memset(nvec, 0, sizeof(FVECT));
|
| 394 |
return(0.);
|
| 395 |
}
|
| 396 |
VCOPY(nvec, co->ad);
|
| 397 |
return(DOT(nvec, CO_P0(co)));
|
| 398 |
}
|
| 399 |
|
| 400 |
|
| 401 |
int
|
| 402 |
commonspot( /* set sp1 to intersection of sp1 and sp2 */
|
| 403 |
SPOT *sp1,
|
| 404 |
SPOT *sp2,
|
| 405 |
FVECT org
|
| 406 |
)
|
| 407 |
{
|
| 408 |
FVECT cent;
|
| 409 |
double rad2, cos1, cos2;
|
| 410 |
|
| 411 |
cos1 = 1. - sp1->siz/(2.*PI);
|
| 412 |
cos2 = 1. - sp2->siz/(2.*PI);
|
| 413 |
if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
|
| 414 |
return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
|
| 415 |
sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
|
| 416 |
/* compute and check disks */
|
| 417 |
rad2 = intercircle(cent, sp1->aim, sp2->aim,
|
| 418 |
1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
|
| 419 |
if (rad2 <= FTINY || normalize(cent) == 0.)
|
| 420 |
return(0);
|
| 421 |
VCOPY(sp1->aim, cent);
|
| 422 |
sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
|
| 423 |
return(1);
|
| 424 |
}
|
| 425 |
|
| 426 |
|
| 427 |
int
|
| 428 |
commonbeam( /* set sp1 to intersection of sp1 and sp2 */
|
| 429 |
SPOT *sp1,
|
| 430 |
SPOT *sp2,
|
| 431 |
FVECT dir
|
| 432 |
)
|
| 433 |
{
|
| 434 |
FVECT cent, c1, c2;
|
| 435 |
double rad2, d;
|
| 436 |
/* move centers to common plane */
|
| 437 |
d = DOT(sp1->aim, dir);
|
| 438 |
VSUM(c1, sp1->aim, dir, -d);
|
| 439 |
d = DOT(sp2->aim, dir);
|
| 440 |
VSUM(c2, sp2->aim, dir, -d);
|
| 441 |
/* compute overlap */
|
| 442 |
rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
|
| 443 |
if (rad2 <= FTINY)
|
| 444 |
return(0);
|
| 445 |
VCOPY(sp1->aim, cent);
|
| 446 |
sp1->siz = PI*rad2;
|
| 447 |
return(1);
|
| 448 |
}
|
| 449 |
|
| 450 |
|
| 451 |
int
|
| 452 |
checkspot( /* check spotlight for behind source */
|
| 453 |
SPOT *sp, /* spotlight */
|
| 454 |
FVECT nrm /* source surface normal */
|
| 455 |
)
|
| 456 |
{
|
| 457 |
double d, d1;
|
| 458 |
|
| 459 |
d = DOT(sp->aim, nrm);
|
| 460 |
if (d > FTINY) /* center in front? */
|
| 461 |
return(1);
|
| 462 |
/* else check horizon */
|
| 463 |
d1 = 1. - sp->siz/(2.*PI);
|
| 464 |
return(1.-FTINY-d*d < d1*d1);
|
| 465 |
}
|
| 466 |
|
| 467 |
|
| 468 |
double
|
| 469 |
spotdisk( /* intersect spot with object op */
|
| 470 |
FVECT oc,
|
| 471 |
OBJREC *op,
|
| 472 |
SPOT *sp,
|
| 473 |
FVECT pos
|
| 474 |
)
|
| 475 |
{
|
| 476 |
FVECT onorm;
|
| 477 |
double offs, d, dist;
|
| 478 |
|
| 479 |
offs = getplaneq(onorm, op);
|
| 480 |
d = -DOT(onorm, sp->aim);
|
| 481 |
if (d >= -FTINY && d <= FTINY)
|
| 482 |
return(0.);
|
| 483 |
dist = (DOT(pos, onorm) - offs)/d;
|
| 484 |
if (dist < 0.)
|
| 485 |
return(0.);
|
| 486 |
VSUM(oc, pos, sp->aim, dist);
|
| 487 |
return(sp->siz*dist*dist/PI/(d*d));
|
| 488 |
}
|
| 489 |
|
| 490 |
|
| 491 |
double
|
| 492 |
beamdisk( /* intersect beam with object op */
|
| 493 |
FVECT oc,
|
| 494 |
OBJREC *op,
|
| 495 |
SPOT *sp,
|
| 496 |
FVECT dir
|
| 497 |
)
|
| 498 |
{
|
| 499 |
FVECT onorm;
|
| 500 |
double offs, d, dist;
|
| 501 |
|
| 502 |
offs = getplaneq(onorm, op);
|
| 503 |
d = -DOT(onorm, dir);
|
| 504 |
if (d >= -FTINY && d <= FTINY)
|
| 505 |
return(0.);
|
| 506 |
dist = (DOT(sp->aim, onorm) - offs)/d;
|
| 507 |
VSUM(oc, sp->aim, dir, dist);
|
| 508 |
return(sp->siz/PI/(d*d));
|
| 509 |
}
|
| 510 |
|
| 511 |
|
| 512 |
double
|
| 513 |
intercircle( /* intersect two circles */
|
| 514 |
FVECT cc, /* midpoint (return value) */
|
| 515 |
FVECT c1, /* circle centers */
|
| 516 |
FVECT c2,
|
| 517 |
double r1s, /* radii squared */
|
| 518 |
double r2s
|
| 519 |
)
|
| 520 |
{
|
| 521 |
double a2, d2, l;
|
| 522 |
FVECT disp;
|
| 523 |
|
| 524 |
VSUB(disp, c2, c1);
|
| 525 |
d2 = DOT(disp,disp);
|
| 526 |
/* circle within overlap? */
|
| 527 |
if (r1s < r2s) {
|
| 528 |
if (r2s >= r1s + d2) {
|
| 529 |
VCOPY(cc, c1);
|
| 530 |
return(r1s);
|
| 531 |
}
|
| 532 |
} else {
|
| 533 |
if (r1s >= r2s + d2) {
|
| 534 |
VCOPY(cc, c2);
|
| 535 |
return(r2s);
|
| 536 |
}
|
| 537 |
}
|
| 538 |
a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
|
| 539 |
/* no overlap? */
|
| 540 |
if (a2 <= 0.)
|
| 541 |
return(0.);
|
| 542 |
/* overlap, compute center */
|
| 543 |
l = sqrt((r1s - a2)/d2);
|
| 544 |
VSUM(cc, c1, disp, l);
|
| 545 |
return(a2);
|
| 546 |
}
|