| 1 | 
greg | 
1.1 | 
/* Copyright (c) 1986 Regents of the University of California */ | 
| 2 | 
  | 
  | 
 | 
| 3 | 
  | 
  | 
#ifndef lint | 
| 4 | 
  | 
  | 
static char SCCSid[] = "$SunId$ LBL"; | 
| 5 | 
  | 
  | 
#endif | 
| 6 | 
  | 
  | 
 | 
| 7 | 
  | 
  | 
/* | 
| 8 | 
  | 
  | 
 *  sphere.c - compute ray intersection with spheres. | 
| 9 | 
  | 
  | 
 * | 
| 10 | 
  | 
  | 
 *     8/19/85 | 
| 11 | 
  | 
  | 
 */ | 
| 12 | 
  | 
  | 
 | 
| 13 | 
  | 
  | 
#include  "ray.h" | 
| 14 | 
  | 
  | 
 | 
| 15 | 
  | 
  | 
#include  "otypes.h" | 
| 16 | 
  | 
  | 
 | 
| 17 | 
  | 
  | 
 | 
| 18 | 
  | 
  | 
o_sphere(so, r)                 /* compute intersection with sphere */ | 
| 19 | 
  | 
  | 
OBJREC  *so; | 
| 20 | 
  | 
  | 
register RAY  *r; | 
| 21 | 
  | 
  | 
{ | 
| 22 | 
  | 
  | 
        double  a, b, c;        /* coefficients for quadratic equation */ | 
| 23 | 
  | 
  | 
        double  root[2];        /* quadratic roots */ | 
| 24 | 
  | 
  | 
        int  nroots; | 
| 25 | 
  | 
  | 
        double  t; | 
| 26 | 
  | 
  | 
        register double  *ap; | 
| 27 | 
  | 
  | 
        register int  i; | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
        if (so->oargs.nfargs != 4 || so->oargs.farg[3] <= FTINY) | 
| 30 | 
  | 
  | 
                objerror(so, USER, "bad arguments"); | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
        ap = so->oargs.farg; | 
| 33 | 
  | 
  | 
 | 
| 34 | 
  | 
  | 
        /* | 
| 35 | 
  | 
  | 
         *      We compute the intersection by substituting into | 
| 36 | 
  | 
  | 
         *  the surface equation for the sphere.  The resulting | 
| 37 | 
  | 
  | 
         *  quadratic equation in t is then solved for the | 
| 38 | 
  | 
  | 
         *  smallest positive root, which is our point of | 
| 39 | 
  | 
  | 
         *  intersection. | 
| 40 | 
  | 
  | 
         *      Because the ray direction is normalized, a is always 1. | 
| 41 | 
  | 
  | 
         */ | 
| 42 | 
  | 
  | 
 | 
| 43 | 
  | 
  | 
        a = 1.0;                /* compute quadratic coefficients */ | 
| 44 | 
  | 
  | 
        b = c = 0.0; | 
| 45 | 
  | 
  | 
        for (i = 0; i < 3; i++) { | 
| 46 | 
  | 
  | 
                t = r->rorg[i] - ap[i]; | 
| 47 | 
  | 
  | 
                b += 2.0*r->rdir[i]*t; | 
| 48 | 
  | 
  | 
                c += t*t; | 
| 49 | 
  | 
  | 
        } | 
| 50 | 
  | 
  | 
        c -= ap[3] * ap[3]; | 
| 51 | 
  | 
  | 
 | 
| 52 | 
  | 
  | 
        nroots = quadratic(root, a, b, c);      /* solve quadratic */ | 
| 53 | 
  | 
  | 
         | 
| 54 | 
  | 
  | 
        for (i = 0; i < nroots; i++)            /* get smallest positive */ | 
| 55 | 
  | 
  | 
                if ((t = root[i]) > FTINY) | 
| 56 | 
  | 
  | 
                        break; | 
| 57 | 
  | 
  | 
        if (i >= nroots) | 
| 58 | 
  | 
  | 
                return(0);                      /* no positive root */ | 
| 59 | 
  | 
  | 
 | 
| 60 | 
  | 
  | 
        if (t < r->rot) {                       /* found closer intersection */ | 
| 61 | 
  | 
  | 
                r->ro = so; | 
| 62 | 
  | 
  | 
                r->rot = t; | 
| 63 | 
  | 
  | 
                                                /* compute normal */ | 
| 64 | 
  | 
  | 
                a = ap[3]; | 
| 65 | 
  | 
  | 
                if (so->otype == OBJ_BUBBLE) | 
| 66 | 
  | 
  | 
                        a = -a;                 /* reverse */ | 
| 67 | 
  | 
  | 
                for (i = 0; i < 3; i++) { | 
| 68 | 
  | 
  | 
                        r->rop[i] = r->rorg[i] + r->rdir[i]*t; | 
| 69 | 
  | 
  | 
                        r->ron[i] = (r->rop[i] - ap[i]) / a; | 
| 70 | 
  | 
  | 
                } | 
| 71 | 
  | 
  | 
                r->rod = -DOT(r->rdir, r->ron); | 
| 72 | 
  | 
  | 
        } | 
| 73 | 
  | 
  | 
        return(1); | 
| 74 | 
  | 
  | 
} |