| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: raypcalls.c,v 2.23 2009/12/12 19:01:00 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* raypcalls.c - interface for parallel rendering using Radiance
|
| 6 |
*
|
| 7 |
* External symbols declared in ray.h
|
| 8 |
*/
|
| 9 |
|
| 10 |
#include "copyright.h"
|
| 11 |
|
| 12 |
/*
|
| 13 |
* These calls are designed similarly to the ones in raycalls.c,
|
| 14 |
* but allow for multiple rendering processes on the same host
|
| 15 |
* machine. There is no sense in specifying more child processes
|
| 16 |
* than you have processor cores, but one child may help by allowing
|
| 17 |
* asynchronous ray computation in an interactive program, and
|
| 18 |
* will protect the caller from fatal rendering errors.
|
| 19 |
*
|
| 20 |
* You should first read and understand the header in raycalls.c,
|
| 21 |
* as some things are explained there that are not repated here.
|
| 22 |
*
|
| 23 |
* The first step is opening one or more rendering processes
|
| 24 |
* with a call to ray_pinit(oct, nproc). Before calling fork(),
|
| 25 |
* ray_pinit() loads the octree and data structures into the
|
| 26 |
* caller's memory, and ray_popen() synchronizes the ambient
|
| 27 |
* file, if any. Shared memory permits all sorts of queries
|
| 28 |
* that wouldn't be possible otherwise without causing any real
|
| 29 |
* memory overhead, since all the static data are shared
|
| 30 |
* between processes. Rays are traced using a simple
|
| 31 |
* queuing mechanism, explained below.
|
| 32 |
*
|
| 33 |
* The ray queue buffers RAYQLEN rays before sending to
|
| 34 |
* children, each of which may internally buffer RAYQLEN rays
|
| 35 |
* during evaluation. Rays are not returned in the order
|
| 36 |
* they are sent when multiple processes are open.
|
| 37 |
*
|
| 38 |
* Rays are queued and returned by a single
|
| 39 |
* ray_pqueue() call. A ray_pqueue() return
|
| 40 |
* value of 0 indicates that no rays are ready
|
| 41 |
* and the queue is not yet full. A return value of 1
|
| 42 |
* indicates that a ray was returned, though it is probably
|
| 43 |
* not the one you just requested. Rays may be identified by
|
| 44 |
* the rno member of the RAY struct, which is incremented
|
| 45 |
* by the rayorigin() call, or may be set explicitly by
|
| 46 |
* the caller. Below is an example call sequence:
|
| 47 |
*
|
| 48 |
* myRay.rorg = ( ray origin point )
|
| 49 |
* myRay.rdir = ( normalized ray direction )
|
| 50 |
* myRay.rmax = ( maximum length, or zero for no limit )
|
| 51 |
* rayorigin(&myRay, PRIMARY, NULL, NULL);
|
| 52 |
* myRay.rno = ( my personal ray identifier )
|
| 53 |
* if (ray_pqueue(&myRay) == 1)
|
| 54 |
* { do something with results }
|
| 55 |
*
|
| 56 |
* Note the differences between this and the simpler ray_trace()
|
| 57 |
* call. In particular, the call may or may not return a value
|
| 58 |
* in the passed ray structure. Also, you need to call rayorigin()
|
| 59 |
* yourself, which is normally called for you by ray_trace(). The
|
| 60 |
* benefit is that ray_pqueue() will trace rays faster in
|
| 61 |
* proportion to the number of CPUs you have available on your
|
| 62 |
* system. If the ray queue is full before the call, ray_pqueue()
|
| 63 |
* will block until a result is ready so it can queue this one.
|
| 64 |
* The global int ray_pnidle indicates the number of currently idle
|
| 65 |
* children. If you want to check for completed rays without blocking,
|
| 66 |
* or get the results from rays that have been queued without
|
| 67 |
* queuing any new ones, the ray_presult() call is for you:
|
| 68 |
*
|
| 69 |
* if (ray_presult(&myRay, 1) == 1)
|
| 70 |
* { do something with results }
|
| 71 |
*
|
| 72 |
* If the second argument is 1, the call won't block when
|
| 73 |
* results aren't ready, but will immediately return 0.
|
| 74 |
* (A special value of -1 returns 0 unless a ray is
|
| 75 |
* ready in the queue and no system calls are needed.)
|
| 76 |
* If the second argument is 0, the call will block
|
| 77 |
* until a value is available, returning 0 only if the
|
| 78 |
* queue is completely empty. A negative return value
|
| 79 |
* indicates that a rendering process died. If this
|
| 80 |
* happens, ray_pclose(0) is automatically called to close
|
| 81 |
* all child processes, and ray_pnprocs is set to zero.
|
| 82 |
*
|
| 83 |
* If you just want to fill the ray queue without checking for
|
| 84 |
* results, check ray_pnidle and call ray_psend():
|
| 85 |
*
|
| 86 |
* while (ray_pnidle) {
|
| 87 |
* ( set up ray )
|
| 88 |
* ray_psend(&myRay);
|
| 89 |
* }
|
| 90 |
*
|
| 91 |
* Note that it is a fatal error to call ra_psend() when
|
| 92 |
* ray_pnidle is zero. The ray_presult() and/or ray_pqueue()
|
| 93 |
* functions may be called subsequently to read back the results.
|
| 94 |
*
|
| 95 |
* When you are done, you may call ray_pdone(1) to close
|
| 96 |
* all child processes and clean up memory used by Radiance.
|
| 97 |
* Any queued ray calculations will be awaited and discarded.
|
| 98 |
* As with ray_done(), ray_pdone(0) hangs onto data files
|
| 99 |
* and fonts that are likely to be used in subsequent renderings.
|
| 100 |
* Whether you need to clean up memory or not, you should
|
| 101 |
* at least call ray_pclose(0) to await the child processes.
|
| 102 |
* The caller should define a quit() function that calls
|
| 103 |
* ray_pclose(0) if ray_pnprocs > 0.
|
| 104 |
*
|
| 105 |
* Warning: You cannot affect any of the rendering processes
|
| 106 |
* by changing global parameter values onece ray_pinit() has
|
| 107 |
* been called. Changing global parameters will have no effect
|
| 108 |
* until the next call to ray_pinit(), which restarts everything.
|
| 109 |
* If you just want to reap children so that you can alter the
|
| 110 |
* rendering parameters without reloading the scene, use the
|
| 111 |
* ray_pclose(0) and ray_popen(nproc) calls to close
|
| 112 |
* then restart the child processes after the changes are made.
|
| 113 |
*
|
| 114 |
* Note: These routines are written to coordinate with the
|
| 115 |
* definitions in raycalls.c, and in fact depend on them.
|
| 116 |
* If you want to trace a ray and get a result synchronously,
|
| 117 |
* use the ray_trace() call to compute it in the parent process.
|
| 118 |
* This will not interfere with any subprocess calculations,
|
| 119 |
* but beware that a fatal error may end with a call to quit().
|
| 120 |
*
|
| 121 |
* Note: One of the advantages of using separate processes
|
| 122 |
* is that it gives the calling program some immunity from
|
| 123 |
* fatal rendering errors. As discussed in raycalls.c,
|
| 124 |
* Radiance tends to throw up its hands and exit at the
|
| 125 |
* first sign of trouble, calling quit() to return control
|
| 126 |
* to the top level. Although you can avoid exit() with
|
| 127 |
* your own longjmp() in quit(), the cleanup afterwards
|
| 128 |
* is always suspect. Through the use of subprocesses,
|
| 129 |
* we avoid this pitfall by closing the processes and
|
| 130 |
* returning a negative value from ray_pqueue() or
|
| 131 |
* ray_presult(). If you get a negative value from either
|
| 132 |
* of these calls, you can assume that the processes have
|
| 133 |
* been cleaned up with a call to ray_pclose(), though you
|
| 134 |
* will have to call ray_pdone() yourself if you want to
|
| 135 |
* free memory. Obviously, you cannot continue rendering
|
| 136 |
* without risking further errors, but otherwise your
|
| 137 |
* process should not be compromised.
|
| 138 |
*/
|
| 139 |
|
| 140 |
#include "rtprocess.h"
|
| 141 |
#include "ray.h"
|
| 142 |
#include "ambient.h"
|
| 143 |
#include <sys/types.h>
|
| 144 |
#include <sys/wait.h>
|
| 145 |
#include "selcall.h"
|
| 146 |
|
| 147 |
#ifndef RAYQLEN
|
| 148 |
#define RAYQLEN 12 /* # rays to send at once */
|
| 149 |
#endif
|
| 150 |
|
| 151 |
#ifndef MAX_RPROCS
|
| 152 |
#if (FD_SETSIZE/2-4 < 64)
|
| 153 |
#define MAX_NPROCS (FD_SETSIZE/2-4)
|
| 154 |
#else
|
| 155 |
#define MAX_NPROCS 64 /* max. # rendering processes */
|
| 156 |
#endif
|
| 157 |
#endif
|
| 158 |
|
| 159 |
extern char *shm_boundary; /* boundary of shared memory */
|
| 160 |
|
| 161 |
int ray_pnprocs = 0; /* number of child processes */
|
| 162 |
int ray_pnidle = 0; /* number of idle children */
|
| 163 |
|
| 164 |
static struct child_proc {
|
| 165 |
int pid; /* child process id */
|
| 166 |
int fd_send; /* write to child here */
|
| 167 |
int fd_recv; /* read from child here */
|
| 168 |
int npending; /* # rays in process */
|
| 169 |
RNUMBER rno[RAYQLEN]; /* working on these rays */
|
| 170 |
} r_proc[MAX_NPROCS]; /* our child processes */
|
| 171 |
|
| 172 |
static RAY r_queue[2*RAYQLEN]; /* ray i/o buffer */
|
| 173 |
static int r_send_next = 0; /* next send ray placement */
|
| 174 |
static int r_recv_first = RAYQLEN; /* position of first unreported ray */
|
| 175 |
static int r_recv_next = RAYQLEN; /* next received ray placement */
|
| 176 |
|
| 177 |
#define sendq_full() (r_send_next >= RAYQLEN)
|
| 178 |
|
| 179 |
static int ray_pflush(void);
|
| 180 |
static void ray_pchild(int fd_in, int fd_out);
|
| 181 |
|
| 182 |
|
| 183 |
void
|
| 184 |
ray_pinit( /* initialize ray-tracing processes */
|
| 185 |
char *otnm,
|
| 186 |
int nproc
|
| 187 |
)
|
| 188 |
{
|
| 189 |
if (nobjects > 0) /* close old calculation */
|
| 190 |
ray_pdone(0);
|
| 191 |
|
| 192 |
ray_init(otnm); /* load the shared scene */
|
| 193 |
|
| 194 |
ray_popen(nproc); /* fork children */
|
| 195 |
}
|
| 196 |
|
| 197 |
|
| 198 |
static int
|
| 199 |
ray_pflush(void) /* send queued rays to idle children */
|
| 200 |
{
|
| 201 |
int nc, n, nw, i, sfirst;
|
| 202 |
|
| 203 |
if ((ray_pnidle <= 0) | (r_send_next <= 0))
|
| 204 |
return(0); /* nothing we can send */
|
| 205 |
|
| 206 |
sfirst = 0; /* divvy up labor */
|
| 207 |
nc = ray_pnidle;
|
| 208 |
for (i = ray_pnprocs; nc && i--; ) {
|
| 209 |
if (r_proc[i].npending > 0)
|
| 210 |
continue; /* child looks busy */
|
| 211 |
n = (r_send_next - sfirst)/nc--;
|
| 212 |
if (!n)
|
| 213 |
continue;
|
| 214 |
/* smuggle set size in crtype */
|
| 215 |
r_queue[sfirst].crtype = n;
|
| 216 |
nw = writebuf(r_proc[i].fd_send, (char *)&r_queue[sfirst],
|
| 217 |
sizeof(RAY)*n);
|
| 218 |
if (nw != sizeof(RAY)*n)
|
| 219 |
return(-1); /* write error */
|
| 220 |
r_proc[i].npending = n;
|
| 221 |
while (n--) /* record ray IDs */
|
| 222 |
r_proc[i].rno[n] = r_queue[sfirst+n].rno;
|
| 223 |
sfirst += r_proc[i].npending;
|
| 224 |
ray_pnidle--; /* now she's busy */
|
| 225 |
}
|
| 226 |
if (sfirst != r_send_next)
|
| 227 |
error(CONSISTENCY, "code screwup in ray_pflush()");
|
| 228 |
r_send_next = 0;
|
| 229 |
return(sfirst); /* return total # sent */
|
| 230 |
}
|
| 231 |
|
| 232 |
|
| 233 |
void
|
| 234 |
ray_psend( /* add a ray to our send queue */
|
| 235 |
RAY *r
|
| 236 |
)
|
| 237 |
{
|
| 238 |
if (r == NULL)
|
| 239 |
return;
|
| 240 |
/* flush output if necessary */
|
| 241 |
if (sendq_full() && ray_pflush() <= 0)
|
| 242 |
error(INTERNAL, "ray_pflush failed in ray_psend()");
|
| 243 |
|
| 244 |
r_queue[r_send_next++] = *r;
|
| 245 |
}
|
| 246 |
|
| 247 |
|
| 248 |
int
|
| 249 |
ray_pqueue( /* queue a ray for computation */
|
| 250 |
RAY *r
|
| 251 |
)
|
| 252 |
{
|
| 253 |
if (r == NULL)
|
| 254 |
return(0);
|
| 255 |
/* check for full send queue */
|
| 256 |
if (sendq_full()) {
|
| 257 |
RAY mySend = *r;
|
| 258 |
/* wait for a result */
|
| 259 |
if (ray_presult(r, 0) <= 0)
|
| 260 |
return(-1);
|
| 261 |
/* put new ray in queue */
|
| 262 |
r_queue[r_send_next++] = mySend;
|
| 263 |
/* XXX r_send_next may now be > RAYQLEN */
|
| 264 |
return(1);
|
| 265 |
}
|
| 266 |
/* else add ray to send queue */
|
| 267 |
r_queue[r_send_next++] = *r;
|
| 268 |
/* check for returned ray... */
|
| 269 |
if (r_recv_first >= r_recv_next)
|
| 270 |
return(0);
|
| 271 |
/* ...one is sitting in queue */
|
| 272 |
*r = r_queue[r_recv_first++];
|
| 273 |
return(1);
|
| 274 |
}
|
| 275 |
|
| 276 |
|
| 277 |
int
|
| 278 |
ray_presult( /* check for a completed ray */
|
| 279 |
RAY *r,
|
| 280 |
int poll
|
| 281 |
)
|
| 282 |
{
|
| 283 |
static struct timeval tpoll; /* zero timeval struct */
|
| 284 |
static fd_set readset, errset;
|
| 285 |
int n, ok;
|
| 286 |
register int pn;
|
| 287 |
|
| 288 |
if (r == NULL)
|
| 289 |
return(0);
|
| 290 |
/* check queued results first */
|
| 291 |
if (r_recv_first < r_recv_next) {
|
| 292 |
*r = r_queue[r_recv_first++];
|
| 293 |
return(1);
|
| 294 |
}
|
| 295 |
if (poll < 0) /* immediate polling mode? */
|
| 296 |
return(0);
|
| 297 |
|
| 298 |
n = ray_pnprocs - ray_pnidle; /* pending before flush? */
|
| 299 |
|
| 300 |
if (ray_pflush() < 0) /* send new rays to process */
|
| 301 |
return(-1);
|
| 302 |
/* reset receive queue */
|
| 303 |
r_recv_first = r_recv_next = RAYQLEN;
|
| 304 |
|
| 305 |
if (!poll) /* count newly sent unless polling */
|
| 306 |
n = ray_pnprocs - ray_pnidle;
|
| 307 |
if (n <= 0) /* return if nothing to await */
|
| 308 |
return(0);
|
| 309 |
if (!poll && ray_pnprocs == 1) /* one process -> skip select() */
|
| 310 |
FD_SET(r_proc[0].fd_recv, &readset);
|
| 311 |
|
| 312 |
getready: /* any children waiting for us? */
|
| 313 |
for (pn = ray_pnprocs; pn--; )
|
| 314 |
if (FD_ISSET(r_proc[pn].fd_recv, &readset) ||
|
| 315 |
FD_ISSET(r_proc[pn].fd_recv, &errset))
|
| 316 |
break;
|
| 317 |
/* call select() if we must */
|
| 318 |
if (pn < 0) {
|
| 319 |
FD_ZERO(&readset); FD_ZERO(&errset); n = 0;
|
| 320 |
for (pn = ray_pnprocs; pn--; ) {
|
| 321 |
if (r_proc[pn].npending > 0)
|
| 322 |
FD_SET(r_proc[pn].fd_recv, &readset);
|
| 323 |
FD_SET(r_proc[pn].fd_recv, &errset);
|
| 324 |
if (r_proc[pn].fd_recv >= n)
|
| 325 |
n = r_proc[pn].fd_recv + 1;
|
| 326 |
}
|
| 327 |
/* find out who is ready */
|
| 328 |
while ((n = select(n, &readset, (fd_set *)NULL, &errset,
|
| 329 |
poll ? &tpoll : (struct timeval *)NULL)) < 0)
|
| 330 |
if (errno != EINTR) {
|
| 331 |
error(WARNING,
|
| 332 |
"select call failed in ray_presult()");
|
| 333 |
ray_pclose(0);
|
| 334 |
return(-1);
|
| 335 |
}
|
| 336 |
if (n > 0) /* go back and get it */
|
| 337 |
goto getready;
|
| 338 |
return(0); /* else poll came up empty */
|
| 339 |
}
|
| 340 |
if (r_recv_next + r_proc[pn].npending > sizeof(r_queue)/sizeof(RAY))
|
| 341 |
error(CONSISTENCY, "buffer shortage in ray_presult()");
|
| 342 |
|
| 343 |
/* read rendered ray data */
|
| 344 |
n = readbuf(r_proc[pn].fd_recv, (char *)&r_queue[r_recv_next],
|
| 345 |
sizeof(RAY)*r_proc[pn].npending);
|
| 346 |
if (n > 0) {
|
| 347 |
r_recv_next += n/sizeof(RAY);
|
| 348 |
ok = (n == sizeof(RAY)*r_proc[pn].npending);
|
| 349 |
} else
|
| 350 |
ok = 0;
|
| 351 |
/* reset child's status */
|
| 352 |
FD_CLR(r_proc[pn].fd_recv, &readset);
|
| 353 |
if (n <= 0)
|
| 354 |
FD_CLR(r_proc[pn].fd_recv, &errset);
|
| 355 |
r_proc[pn].npending = 0;
|
| 356 |
ray_pnidle++;
|
| 357 |
/* check for rendering errors */
|
| 358 |
if (!ok) {
|
| 359 |
ray_pclose(0); /* process died -- clean up */
|
| 360 |
return(-1);
|
| 361 |
}
|
| 362 |
/* preen returned rays */
|
| 363 |
for (n = r_recv_next - r_recv_first; n--; ) {
|
| 364 |
register RAY *rp = &r_queue[r_recv_first + n];
|
| 365 |
rp->rno = r_proc[pn].rno[n];
|
| 366 |
rp->parent = NULL;
|
| 367 |
rp->newcset = rp->clipset = NULL;
|
| 368 |
rp->rox = NULL;
|
| 369 |
rp->slights = NULL;
|
| 370 |
}
|
| 371 |
/* return first ray received */
|
| 372 |
*r = r_queue[r_recv_first++];
|
| 373 |
return(1);
|
| 374 |
}
|
| 375 |
|
| 376 |
|
| 377 |
void
|
| 378 |
ray_pdone( /* reap children and free data */
|
| 379 |
int freall
|
| 380 |
)
|
| 381 |
{
|
| 382 |
ray_pclose(0); /* close child processes */
|
| 383 |
|
| 384 |
if (shm_boundary != NULL) { /* clear shared memory boundary */
|
| 385 |
free((void *)shm_boundary);
|
| 386 |
shm_boundary = NULL;
|
| 387 |
}
|
| 388 |
|
| 389 |
ray_done(freall); /* free rendering data */
|
| 390 |
}
|
| 391 |
|
| 392 |
|
| 393 |
static void
|
| 394 |
ray_pchild( /* process rays (never returns) */
|
| 395 |
int fd_in,
|
| 396 |
int fd_out
|
| 397 |
)
|
| 398 |
{
|
| 399 |
int n;
|
| 400 |
register int i;
|
| 401 |
/* flag child process for quit() */
|
| 402 |
ray_pnprocs = -1;
|
| 403 |
/* read each ray request set */
|
| 404 |
while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) {
|
| 405 |
int n2;
|
| 406 |
if (n < sizeof(RAY))
|
| 407 |
break;
|
| 408 |
/* get smuggled set length */
|
| 409 |
n2 = sizeof(RAY)*r_queue[0].crtype - n;
|
| 410 |
if (n2 < 0)
|
| 411 |
error(INTERNAL, "buffer over-read in ray_pchild()");
|
| 412 |
if (n2 > 0) { /* read the rest of the set */
|
| 413 |
i = readbuf(fd_in, (char *)r_queue + n, n2);
|
| 414 |
if (i != n2)
|
| 415 |
break;
|
| 416 |
n += n2;
|
| 417 |
}
|
| 418 |
n /= sizeof(RAY);
|
| 419 |
/* evaluate rays */
|
| 420 |
for (i = 0; i < n; i++) {
|
| 421 |
r_queue[i].crtype = r_queue[i].rtype;
|
| 422 |
r_queue[i].parent = NULL;
|
| 423 |
r_queue[i].clipset = NULL;
|
| 424 |
r_queue[i].slights = NULL;
|
| 425 |
r_queue[i].rlvl = 0;
|
| 426 |
samplendx++;
|
| 427 |
rayclear(&r_queue[i]);
|
| 428 |
rayvalue(&r_queue[i]);
|
| 429 |
}
|
| 430 |
/* write back our results */
|
| 431 |
i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n);
|
| 432 |
if (i != sizeof(RAY)*n)
|
| 433 |
error(SYSTEM, "write error in ray_pchild()");
|
| 434 |
}
|
| 435 |
if (n)
|
| 436 |
error(SYSTEM, "read error in ray_pchild()");
|
| 437 |
ambsync();
|
| 438 |
quit(0); /* normal exit */
|
| 439 |
}
|
| 440 |
|
| 441 |
|
| 442 |
void
|
| 443 |
ray_popen( /* open the specified # processes */
|
| 444 |
int nadd
|
| 445 |
)
|
| 446 |
{
|
| 447 |
/* check if our table has room */
|
| 448 |
if (ray_pnprocs + nadd > MAX_NPROCS)
|
| 449 |
nadd = MAX_NPROCS - ray_pnprocs;
|
| 450 |
if (nadd <= 0)
|
| 451 |
return;
|
| 452 |
ambsync(); /* load any new ambient values */
|
| 453 |
if (shm_boundary == NULL) { /* first child process? */
|
| 454 |
preload_objs(); /* preload auxiliary data */
|
| 455 |
/* set shared memory boundary */
|
| 456 |
shm_boundary = (char *)malloc(16);
|
| 457 |
strcpy(shm_boundary, "SHM_BOUNDARY");
|
| 458 |
}
|
| 459 |
fflush(NULL); /* clear pending output */
|
| 460 |
while (nadd--) { /* fork each new process */
|
| 461 |
int p0[2], p1[2];
|
| 462 |
if (pipe(p0) < 0 || pipe(p1) < 0)
|
| 463 |
error(SYSTEM, "cannot create pipe");
|
| 464 |
if ((r_proc[ray_pnprocs].pid = fork()) == 0) {
|
| 465 |
int pn; /* close others' descriptors */
|
| 466 |
for (pn = ray_pnprocs; pn--; ) {
|
| 467 |
close(r_proc[pn].fd_send);
|
| 468 |
close(r_proc[pn].fd_recv);
|
| 469 |
}
|
| 470 |
close(p0[0]); close(p1[1]);
|
| 471 |
close(0); /* don't share stdin */
|
| 472 |
/* following call never returns */
|
| 473 |
ray_pchild(p1[0], p0[1]);
|
| 474 |
}
|
| 475 |
if (r_proc[ray_pnprocs].pid < 0)
|
| 476 |
error(SYSTEM, "cannot fork child process");
|
| 477 |
close(p1[0]); close(p0[1]);
|
| 478 |
/*
|
| 479 |
* Close write stream on exec to avoid multiprocessing deadlock.
|
| 480 |
* No use in read stream without it, so set flag there as well.
|
| 481 |
*/
|
| 482 |
fcntl(p1[1], F_SETFD, FD_CLOEXEC);
|
| 483 |
fcntl(p0[0], F_SETFD, FD_CLOEXEC);
|
| 484 |
r_proc[ray_pnprocs].fd_send = p1[1];
|
| 485 |
r_proc[ray_pnprocs].fd_recv = p0[0];
|
| 486 |
r_proc[ray_pnprocs].npending = 0;
|
| 487 |
ray_pnprocs++;
|
| 488 |
ray_pnidle++;
|
| 489 |
}
|
| 490 |
}
|
| 491 |
|
| 492 |
|
| 493 |
void
|
| 494 |
ray_pclose( /* close one or more child processes */
|
| 495 |
int nsub
|
| 496 |
)
|
| 497 |
{
|
| 498 |
static int inclose = 0;
|
| 499 |
RAY res;
|
| 500 |
/* check recursion */
|
| 501 |
if (inclose)
|
| 502 |
return;
|
| 503 |
inclose++;
|
| 504 |
/* check argument */
|
| 505 |
if ((nsub <= 0) | (nsub > ray_pnprocs))
|
| 506 |
nsub = ray_pnprocs;
|
| 507 |
/* clear our ray queue */
|
| 508 |
while (ray_presult(&res,0) > 0)
|
| 509 |
;
|
| 510 |
r_send_next = 0; /* hard reset in case of error */
|
| 511 |
r_recv_first = r_recv_next = RAYQLEN;
|
| 512 |
/* clean up children */
|
| 513 |
while (nsub--) {
|
| 514 |
int status;
|
| 515 |
ray_pnprocs--;
|
| 516 |
close(r_proc[ray_pnprocs].fd_send);
|
| 517 |
if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0)
|
| 518 |
status = 127<<8;
|
| 519 |
close(r_proc[ray_pnprocs].fd_recv);
|
| 520 |
if (status) {
|
| 521 |
sprintf(errmsg,
|
| 522 |
"rendering process %d exited with code %d",
|
| 523 |
r_proc[ray_pnprocs].pid, status>>8);
|
| 524 |
error(WARNING, errmsg);
|
| 525 |
}
|
| 526 |
ray_pnidle--;
|
| 527 |
}
|
| 528 |
inclose--;
|
| 529 |
}
|