| 13 |  | *  These calls are designed similarly to the ones in raycalls.c, | 
| 14 |  | *  but allow for multiple rendering processes on the same host | 
| 15 |  | *  machine.  There is no sense in specifying more child processes | 
| 16 | < | *  than you have processors, but one child may help by allowing | 
| 16 | > | *  than you have processor cores, but one child may help by allowing | 
| 17 |  | *  asynchronous ray computation in an interactive program, and | 
| 18 |  | *  will protect the caller from fatal rendering errors. | 
| 19 |  | * | 
| 20 | < | *  You should first read and undrstand the header in raycalls.c, | 
| 20 | > | *  You should first read and understand the header in raycalls.c, | 
| 21 |  | *  as some things are explained there that are not repated here. | 
| 22 |  | * | 
| 23 |  | *  The first step is opening one or more rendering processes | 
| 25 |  | *  ray_pinit() loads the octree and data structures into the | 
| 26 |  | *  caller's memory, and ray_popen() synchronizes the ambient | 
| 27 |  | *  file, if any.  Shared memory permits all sorts of queries | 
| 28 | < | *  that wouldn't be possible otherwise, without causing any real | 
| 28 | > | *  that wouldn't be possible otherwise without causing any real | 
| 29 |  | *  memory overhead, since all the static data are shared | 
| 30 | < | *  between processes.  Rays are then traced using a simple | 
| 30 | > | *  between processes.  Rays are traced using a simple | 
| 31 |  | *  queuing mechanism, explained below. | 
| 32 |  | * | 
| 33 |  | *  The ray queue buffers RAYQLEN rays before sending to | 
| 34 | < | *  children, each of which may internally buffer RAYQLEN rays. | 
| 34 | > | *  children, each of which may internally buffer RAYQLEN rays | 
| 35 | > | *  during evaluation.  Rays are not returned in the order | 
| 36 | > | *  they are sent when multiple processes are open. | 
| 37 |  | * | 
| 38 |  | *  Rays are queued and returned by a single | 
| 39 |  | *  ray_pqueue() call.  A ray_pqueue() return | 
| 71 |  | * | 
| 72 |  | *  If the second argument is 1, the call won't block when | 
| 73 |  | *  results aren't ready, but will immediately return 0. | 
| 74 | + | *  (A special value of -1 returns 0 unless a ray is | 
| 75 | + | *  ready in the queue and no system calls are needed.) | 
| 76 |  | *  If the second argument is 0, the call will block | 
| 77 |  | *  until a value is available, returning 0 only if the | 
| 78 |  | *  queue is completely empty.  A negative return value | 
| 79 |  | *  indicates that a rendering process died.  If this | 
| 80 | < | *  happens, ray_close(0) is automatically called to close | 
| 80 | > | *  happens, ray_pclose(0) is automatically called to close | 
| 81 |  | *  all child processes, and ray_pnprocs is set to zero. | 
| 82 |  | * | 
| 83 |  | *  If you just want to fill the ray queue without checking for | 
| 88 |  | *              ray_psend(&myRay); | 
| 89 |  | *      } | 
| 90 |  | * | 
| 91 | < | *  Note that it is a fatal error to call ra_psend() when | 
| 92 | < | *  ray_pnidle is zero.  The ray_presult() and/or ray_pqueue() | 
| 93 | < | *  functions may be called subsequently to read back the results. | 
| 91 | > | *  Note that it is a mistake to call ra_psend() when | 
| 92 | > | *  ray_pnidle is zero, and nothing will be sent in | 
| 93 | > | *  this case.  Otherwise, the ray_presult() and/or ray_pqueue() | 
| 94 | > | *  functions may be called subsequently to read back the results | 
| 95 | > | *  of rays queued by ray_psend(). | 
| 96 |  | * | 
| 97 |  | *  When you are done, you may call ray_pdone(1) to close | 
| 98 |  | *  all child processes and clean up memory used by Radiance. | 
| 99 |  | *  Any queued ray calculations will be awaited and discarded. | 
| 100 |  | *  As with ray_done(), ray_pdone(0) hangs onto data files | 
| 101 |  | *  and fonts that are likely to be used in subsequent renderings. | 
| 102 | < | *  Whether you want to bother cleaning up memory or not, you | 
| 103 | < | *  should at least call ray_pclose(0) to clean the child processes. | 
| 102 | > | *  Whether you need to clean up memory or not, you should | 
| 103 | > | *  at least call ray_pclose(0) to await the child processes. | 
| 104 | > | *  The caller should define a quit() function that calls | 
| 105 | > | *  ray_pclose(0) if ray_pnprocs > 0. | 
| 106 |  | * | 
| 107 |  | *  Warning:  You cannot affect any of the rendering processes | 
| 108 |  | *  by changing global parameter values onece ray_pinit() has | 
| 132 |  | *  returning a negative value from ray_pqueue() or | 
| 133 |  | *  ray_presult().  If you get a negative value from either | 
| 134 |  | *  of these calls, you can assume that the processes have | 
| 135 | < | *  been cleaned up with a call to ray_close(), though you | 
| 135 | > | *  been cleaned up with a call to ray_pclose(), though you | 
| 136 |  | *  will have to call ray_pdone() yourself if you want to | 
| 137 |  | *  free memory.  Obviously, you cannot continue rendering | 
| 138 |  | *  without risking further errors, but otherwise your | 
| 139 |  | *  process should not be compromised. | 
| 140 |  | */ | 
| 141 |  |  | 
| 134 | – | #include <stdio.h> | 
| 135 | – | #include <sys/types.h> | 
| 136 | – | #include <sys/wait.h> /* XXX platform */ | 
| 137 | – |  | 
| 142 |  | #include  "rtprocess.h" | 
| 143 |  | #include  "ray.h" | 
| 144 |  | #include  "ambient.h" | 
| 145 | + | #include  <sys/types.h> | 
| 146 | + | #include  <sys/wait.h> | 
| 147 |  | #include  "selcall.h" | 
| 148 |  |  | 
| 149 |  | #ifndef RAYQLEN | 
| 168 |  | int     fd_send;                        /* write to child here */ | 
| 169 |  | int     fd_recv;                        /* read from child here */ | 
| 170 |  | int     npending;                       /* # rays in process */ | 
| 171 | < | unsigned long  rno[RAYQLEN];            /* working on these rays */ | 
| 171 | > | RNUMBER rno[RAYQLEN];                   /* working on these rays */ | 
| 172 |  | } r_proc[MAX_NPROCS];                   /* our child processes */ | 
| 173 |  |  | 
| 174 |  | static RAY      r_queue[2*RAYQLEN];     /* ray i/o buffer */ | 
| 175 | < | static int      r_send_next;            /* next send ray placement */ | 
| 176 | < | static int      r_recv_first;           /* position of first unreported ray */ | 
| 177 | < | static int      r_recv_next;            /* next receive ray placement */ | 
| 175 | > | static int      r_send_next = 0;        /* next send ray placement */ | 
| 176 | > | static int      r_recv_first = RAYQLEN; /* position of first unreported ray */ | 
| 177 | > | static int      r_recv_next = RAYQLEN;  /* next received ray placement */ | 
| 178 |  |  | 
| 179 |  | #define sendq_full()    (r_send_next >= RAYQLEN) | 
| 180 |  |  | 
| 182 |  | static void ray_pchild(int fd_in, int fd_out); | 
| 183 |  |  | 
| 184 |  |  | 
| 185 | < | extern void | 
| 185 | > | void | 
| 186 |  | ray_pinit(              /* initialize ray-tracing processes */ | 
| 187 |  | char    *otnm, | 
| 188 |  | int     nproc | 
| 193 |  |  | 
| 194 |  | ray_init(otnm);                 /* load the shared scene */ | 
| 195 |  |  | 
| 190 | – | preload_objs();                 /* preload auxiliary data */ | 
| 191 | – |  | 
| 192 | – | /* set shared memory boundary */ | 
| 193 | – | shm_boundary = (char *)malloc(16); | 
| 194 | – | strcpy(shm_boundary, "SHM_BOUNDARY"); | 
| 195 | – |  | 
| 196 | – | r_send_next = 0;                /* set up queue */ | 
| 197 | – | r_recv_first = r_recv_next = RAYQLEN; | 
| 198 | – |  | 
| 196 |  | ray_popen(nproc);               /* fork children */ | 
| 197 |  | } | 
| 198 |  |  | 
| 226 |  | ray_pnidle--;           /* now she's busy */ | 
| 227 |  | } | 
| 228 |  | if (sfirst != r_send_next) | 
| 229 | < | error(CONSISTENCY, "code screwup in ray_pflush"); | 
| 229 | > | error(CONSISTENCY, "code screwup in ray_pflush()"); | 
| 230 |  | r_send_next = 0; | 
| 231 |  | return(sfirst);                 /* return total # sent */ | 
| 232 |  | } | 
| 233 |  |  | 
| 234 |  |  | 
| 235 | < | extern void | 
| 235 | > | int | 
| 236 |  | ray_psend(                      /* add a ray to our send queue */ | 
| 237 |  | RAY     *r | 
| 238 |  | ) | 
| 239 |  | { | 
| 240 | < | if (r == NULL) | 
| 241 | < | return; | 
| 240 | > | int     rv; | 
| 241 | > |  | 
| 242 | > | if ((r == NULL) | (ray_pnidle <= 0)) | 
| 243 | > | return(0); | 
| 244 |  | /* flush output if necessary */ | 
| 245 | < | if (sendq_full() && ray_pflush() <= 0) | 
| 246 | < | error(INTERNAL, "ray_pflush failed in ray_psend"); | 
| 245 | > | if (sendq_full() && (rv = ray_pflush()) <= 0) | 
| 246 | > | return(rv); | 
| 247 |  |  | 
| 248 |  | r_queue[r_send_next++] = *r; | 
| 249 | + | return(1); | 
| 250 |  | } | 
| 251 |  |  | 
| 252 |  |  | 
| 253 | < | extern int | 
| 253 | > | int | 
| 254 |  | ray_pqueue(                     /* queue a ray for computation */ | 
| 255 |  | RAY     *r | 
| 256 |  | ) | 
| 259 |  | return(0); | 
| 260 |  | /* check for full send queue */ | 
| 261 |  | if (sendq_full()) { | 
| 262 | < | RAY     mySend; | 
| 263 | < | int     rval; | 
| 264 | < | mySend = *r; | 
| 262 | > | RAY     mySend = *r; | 
| 263 |  | /* wait for a result */ | 
| 264 | < | rval = ray_presult(r, 0); | 
| 264 | > | if (ray_presult(r, 0) <= 0) | 
| 265 | > | return(-1); | 
| 266 |  | /* put new ray in queue */ | 
| 267 |  | r_queue[r_send_next++] = mySend; | 
| 268 | < | return(rval);           /* done */ | 
| 268 | > |  | 
| 269 | > | return(1); | 
| 270 |  | } | 
| 271 |  | /* else add ray to send queue */ | 
| 272 |  | r_queue[r_send_next++] = *r; | 
| 279 |  | } | 
| 280 |  |  | 
| 281 |  |  | 
| 282 | < | extern int | 
| 282 | > | int | 
| 283 |  | ray_presult(            /* check for a completed ray */ | 
| 284 |  | RAY     *r, | 
| 285 |  | int     poll | 
| 295 |  | /* check queued results first */ | 
| 296 |  | if (r_recv_first < r_recv_next) { | 
| 297 |  | *r = r_queue[r_recv_first++]; | 
| 298 | – | /* make sure send queue has room */ | 
| 299 | – | if (sendq_full() && ray_pflush() <= 0) | 
| 300 | – | return(-1); | 
| 298 |  | return(1); | 
| 299 |  | } | 
| 300 | + | if (poll < 0)                   /* immediate polling mode? */ | 
| 301 | + | return(0); | 
| 302 | + |  | 
| 303 |  | n = ray_pnprocs - ray_pnidle;   /* pending before flush? */ | 
| 304 |  |  | 
| 305 |  | if (ray_pflush() < 0)           /* send new rays to process */ | 
| 319 |  | if (FD_ISSET(r_proc[pn].fd_recv, &readset) || | 
| 320 |  | FD_ISSET(r_proc[pn].fd_recv, &errset)) | 
| 321 |  | break; | 
| 322 | < | /* call select if we must */ | 
| 322 | > | /* call select() if we must */ | 
| 323 |  | if (pn < 0) { | 
| 324 |  | FD_ZERO(&readset); FD_ZERO(&errset); n = 0; | 
| 325 |  | for (pn = ray_pnprocs; pn--; ) { | 
| 334 |  | poll ? &tpoll : (struct timeval *)NULL)) < 0) | 
| 335 |  | if (errno != EINTR) { | 
| 336 |  | error(WARNING, | 
| 337 | < | "select call failed in ray_presult"); | 
| 337 | > | "select call failed in ray_presult()"); | 
| 338 |  | ray_pclose(0); | 
| 339 |  | return(-1); | 
| 340 |  | } | 
| 379 |  | } | 
| 380 |  |  | 
| 381 |  |  | 
| 382 | < | extern void | 
| 382 | > | void | 
| 383 |  | ray_pdone(              /* reap children and free data */ | 
| 384 |  | int     freall | 
| 385 |  | ) | 
| 390 |  | free((void *)shm_boundary); | 
| 391 |  | shm_boundary = NULL; | 
| 392 |  | } | 
| 393 | + |  | 
| 394 |  | ray_done(freall);               /* free rendering data */ | 
| 395 |  | } | 
| 396 |  |  | 
| 413 |  | /* get smuggled set length */ | 
| 414 |  | n2 = sizeof(RAY)*r_queue[0].crtype - n; | 
| 415 |  | if (n2 < 0) | 
| 416 | < | error(INTERNAL, "buffer over-read in ray_pchild"); | 
| 416 | > | error(INTERNAL, "buffer over-read in ray_pchild()"); | 
| 417 |  | if (n2 > 0) {           /* read the rest of the set */ | 
| 418 |  | i = readbuf(fd_in, (char *)r_queue + n, n2); | 
| 419 |  | if (i != n2) | 
| 427 |  | r_queue[i].parent = NULL; | 
| 428 |  | r_queue[i].clipset = NULL; | 
| 429 |  | r_queue[i].slights = NULL; | 
| 430 | + | r_queue[i].rlvl = 0; | 
| 431 |  | samplendx++; | 
| 432 |  | rayclear(&r_queue[i]); | 
| 433 |  | rayvalue(&r_queue[i]); | 
| 435 |  | /* write back our results */ | 
| 436 |  | i = writebuf(fd_out, (char *)r_queue, sizeof(RAY)*n); | 
| 437 |  | if (i != sizeof(RAY)*n) | 
| 438 | < | error(SYSTEM, "write error in ray_pchild"); | 
| 438 | > | error(SYSTEM, "write error in ray_pchild()"); | 
| 439 |  | } | 
| 440 |  | if (n) | 
| 441 | < | error(SYSTEM, "read error in ray_pchild"); | 
| 441 | > | error(SYSTEM, "read error in ray_pchild()"); | 
| 442 |  | ambsync(); | 
| 443 |  | quit(0);                        /* normal exit */ | 
| 444 |  | } | 
| 445 |  |  | 
| 446 |  |  | 
| 447 | < | extern void | 
| 447 | > | void | 
| 448 |  | ray_popen(                      /* open the specified # processes */ | 
| 449 |  | int     nadd | 
| 450 |  | ) | 
| 455 |  | if (nadd <= 0) | 
| 456 |  | return; | 
| 457 |  | ambsync();                      /* load any new ambient values */ | 
| 458 | + | if (shm_boundary == NULL) {     /* first child process? */ | 
| 459 | + | preload_objs();         /* preload auxiliary data */ | 
| 460 | + | /* set shared memory boundary */ | 
| 461 | + | shm_boundary = (char *)malloc(16); | 
| 462 | + | strcpy(shm_boundary, "SHM_BOUNDARY"); | 
| 463 | + | } | 
| 464 |  | fflush(NULL);                   /* clear pending output */ | 
| 465 |  | while (nadd--) {                /* fork each new process */ | 
| 466 |  | int     p0[2], p1[2]; | 
| 473 |  | close(r_proc[pn].fd_recv); | 
| 474 |  | } | 
| 475 |  | close(p0[0]); close(p1[1]); | 
| 476 | + | close(0);       /* don't share stdin */ | 
| 477 |  | /* following call never returns */ | 
| 478 |  | ray_pchild(p1[0], p0[1]); | 
| 479 |  | } | 
| 495 |  | } | 
| 496 |  |  | 
| 497 |  |  | 
| 498 | < | extern void | 
| 498 | > | void | 
| 499 |  | ray_pclose(             /* close one or more child processes */ | 
| 500 |  | int     nsub | 
| 501 |  | ) | 
| 512 |  | /* clear our ray queue */ | 
| 513 |  | while (ray_presult(&res,0) > 0) | 
| 514 |  | ; | 
| 515 | + | r_send_next = 0;                /* hard reset in case of error */ | 
| 516 | + | r_recv_first = r_recv_next = RAYQLEN; | 
| 517 |  | /* clean up children */ | 
| 518 |  | while (nsub--) { | 
| 519 |  | int     status; | 
| 520 |  | ray_pnprocs--; | 
| 510 | – | close(r_proc[ray_pnprocs].fd_recv); | 
| 521 |  | close(r_proc[ray_pnprocs].fd_send); | 
| 522 |  | if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0) | 
| 523 |  | status = 127<<8; | 
| 524 | + | close(r_proc[ray_pnprocs].fd_recv); | 
| 525 |  | if (status) { | 
| 526 |  | sprintf(errmsg, | 
| 527 |  | "rendering process %d exited with code %d", | 
| 531 |  | ray_pnidle--; | 
| 532 |  | } | 
| 533 |  | inclose--; | 
| 523 | – | } | 
| 524 | – |  | 
| 525 | – |  | 
| 526 | – | void | 
| 527 | – | quit(ec)                        /* make sure exit is called */ | 
| 528 | – | int     ec; | 
| 529 | – | { | 
| 530 | – | if (ray_pnprocs > 0)    /* close children if any */ | 
| 531 | – | ray_pclose(0); | 
| 532 | – | exit(ec); | 
| 534 |  | } |