| 23 |
|
* The first step is opening one or more rendering processes |
| 24 |
|
* with a call to ray_pinit(oct, nproc). Before calling fork(), |
| 25 |
|
* ray_pinit() loads the octree and data structures into the |
| 26 |
< |
* caller's memory. This permits all sorts of queries that |
| 27 |
< |
* wouldn't be possible otherwise, without causing any real |
| 26 |
> |
* caller's memory, and ray_popen() synchronizes the ambient |
| 27 |
> |
* file, if any. Shared memory permits all sorts of queries |
| 28 |
> |
* that wouldn't be possible otherwise, without causing any real |
| 29 |
|
* memory overhead, since all the static data are shared |
| 30 |
|
* between processes. Rays are then traced using a simple |
| 31 |
|
* queuing mechanism, explained below. |
| 32 |
|
* |
| 33 |
< |
* The ray queue holds as many rays as there are rendering |
| 34 |
< |
* processes. Rays are queued and returned by a single |
| 33 |
> |
* The ray queue buffers RAYQLEN rays before sending to |
| 34 |
> |
* children, each of which may internally buffer RAYQLEN rays. |
| 35 |
> |
* |
| 36 |
> |
* Rays are queued and returned by a single |
| 37 |
|
* ray_pqueue() call. A ray_pqueue() return |
| 38 |
|
* value of 0 indicates that no rays are ready |
| 39 |
|
* and the queue is not yet full. A return value of 1 |
| 46 |
|
* myRay.rorg = ( ray origin point ) |
| 47 |
|
* myRay.rdir = ( normalized ray direction ) |
| 48 |
|
* myRay.rmax = ( maximum length, or zero for no limit ) |
| 49 |
< |
* rayorigin(&myRay, NULL, PRIMARY, 1.0); |
| 49 |
> |
* rayorigin(&myRay, PRIMARY, NULL, NULL); |
| 50 |
|
* myRay.rno = ( my personal ray identifier ) |
| 51 |
|
* if (ray_pqueue(&myRay) == 1) |
| 52 |
|
* { do something with results } |
| 108 |
|
* Note: These routines are written to coordinate with the |
| 109 |
|
* definitions in raycalls.c, and in fact depend on them. |
| 110 |
|
* If you want to trace a ray and get a result synchronously, |
| 111 |
< |
* use the ray_trace() call to compute it in the parent process |
| 111 |
> |
* use the ray_trace() call to compute it in the parent process. |
| 112 |
|
* This will not interfere with any subprocess calculations, |
| 113 |
|
* but beware that a fatal error may end with a call to quit(). |
| 114 |
|
* |
| 141 |
|
#include "selcall.h" |
| 142 |
|
|
| 143 |
|
#ifndef RAYQLEN |
| 144 |
< |
#define RAYQLEN 16 /* # rays to send at once */ |
| 144 |
> |
#define RAYQLEN 12 /* # rays to send at once */ |
| 145 |
|
#endif |
| 146 |
|
|
| 147 |
|
#ifndef MAX_RPROCS |
| 173 |
|
#define sendq_full() (r_send_next >= RAYQLEN) |
| 174 |
|
|
| 175 |
|
static int ray_pflush(void); |
| 176 |
< |
static void ray_pchild(int fd_in, int fd_out); |
| 176 |
> |
static void ray_pchild(int fd_in, int fd_out); |
| 177 |
|
|
| 178 |
|
|
| 179 |
|
extern void |
| 246 |
|
if (sendq_full() && ray_pflush() <= 0) |
| 247 |
|
error(INTERNAL, "ray_pflush failed in ray_psend"); |
| 248 |
|
|
| 249 |
< |
r_queue[r_send_next] = *r; |
| 247 |
< |
r_send_next++; |
| 249 |
> |
r_queue[r_send_next++] = *r; |
| 250 |
|
} |
| 251 |
|
|
| 252 |
|
|
| 265 |
|
/* wait for a result */ |
| 266 |
|
rval = ray_presult(r, 0); |
| 267 |
|
/* put new ray in queue */ |
| 268 |
< |
r_queue[r_send_next] = mySend; |
| 267 |
< |
r_send_next++; |
| 268 |
> |
r_queue[r_send_next++] = mySend; |
| 269 |
|
return(rval); /* done */ |
| 270 |
|
} |
| 271 |
< |
/* add ray to send queue */ |
| 272 |
< |
r_queue[r_send_next] = *r; |
| 272 |
< |
r_send_next++; |
| 271 |
> |
/* else add ray to send queue */ |
| 272 |
> |
r_queue[r_send_next++] = *r; |
| 273 |
|
/* check for returned ray... */ |
| 274 |
|
if (r_recv_first >= r_recv_next) |
| 275 |
|
return(0); |
| 276 |
|
/* ...one is sitting in queue */ |
| 277 |
< |
*r = r_queue[r_recv_first]; |
| 278 |
< |
r_recv_first++; |
| 277 |
> |
*r = r_queue[r_recv_first++]; |
| 278 |
|
return(1); |
| 279 |
|
} |
| 280 |
|
|
| 294 |
|
return(0); |
| 295 |
|
/* check queued results first */ |
| 296 |
|
if (r_recv_first < r_recv_next) { |
| 297 |
< |
*r = r_queue[r_recv_first]; |
| 298 |
< |
r_recv_first++; |
| 297 |
> |
*r = r_queue[r_recv_first++]; |
| 298 |
> |
/* make sure send queue has room */ |
| 299 |
> |
if (sendq_full() && ray_pflush() <= 0) |
| 300 |
> |
return(-1); |
| 301 |
|
return(1); |
| 302 |
|
} |
| 303 |
|
n = ray_pnprocs - ray_pnidle; /* pending before flush? */ |
| 311 |
|
n = ray_pnprocs - ray_pnidle; |
| 312 |
|
if (n <= 0) /* return if nothing to await */ |
| 313 |
|
return(0); |
| 314 |
+ |
if (!poll && ray_pnprocs == 1) /* one process -> skip select() */ |
| 315 |
+ |
FD_SET(r_proc[0].fd_recv, &readset); |
| 316 |
+ |
|
| 317 |
|
getready: /* any children waiting for us? */ |
| 318 |
|
for (pn = ray_pnprocs; pn--; ) |
| 319 |
|
if (FD_ISSET(r_proc[pn].fd_recv, &readset) || |
| 374 |
|
rp->slights = NULL; |
| 375 |
|
} |
| 376 |
|
/* return first ray received */ |
| 377 |
< |
*r = r_queue[r_recv_first]; |
| 374 |
< |
r_recv_first++; |
| 377 |
> |
*r = r_queue[r_recv_first++]; |
| 378 |
|
return(1); |
| 379 |
|
} |
| 380 |
|
|
| 402 |
|
{ |
| 403 |
|
int n; |
| 404 |
|
register int i; |
| 405 |
+ |
/* flag child process for quit() */ |
| 406 |
+ |
ray_pnprocs = -1; |
| 407 |
|
/* read each ray request set */ |
| 408 |
|
while ((n = read(fd_in, (char *)r_queue, sizeof(r_queue))) > 0) { |
| 409 |
|
int n2; |
| 410 |
< |
if (n % sizeof(RAY)) |
| 410 |
> |
if (n < sizeof(RAY)) |
| 411 |
|
break; |
| 407 |
– |
n /= sizeof(RAY); |
| 412 |
|
/* get smuggled set length */ |
| 413 |
< |
n2 = r_queue[0].crtype - n; |
| 413 |
> |
n2 = sizeof(RAY)*r_queue[0].crtype - n; |
| 414 |
|
if (n2 < 0) |
| 415 |
|
error(INTERNAL, "buffer over-read in ray_pchild"); |
| 416 |
|
if (n2 > 0) { /* read the rest of the set */ |
| 417 |
< |
i = readbuf(fd_in, (char *)(r_queue+n), |
| 418 |
< |
sizeof(RAY)*n2); |
| 415 |
< |
if (i != sizeof(RAY)*n2) |
| 417 |
> |
i = readbuf(fd_in, (char *)r_queue + n, n2); |
| 418 |
> |
if (i != n2) |
| 419 |
|
break; |
| 420 |
|
n += n2; |
| 421 |
|
} |
| 422 |
+ |
n /= sizeof(RAY); |
| 423 |
|
/* evaluate rays */ |
| 424 |
|
for (i = 0; i < n; i++) { |
| 425 |
|
r_queue[i].crtype = r_queue[i].rtype; |
| 426 |
|
r_queue[i].parent = NULL; |
| 427 |
|
r_queue[i].clipset = NULL; |
| 428 |
|
r_queue[i].slights = NULL; |
| 425 |
– |
r_queue[i].revf = raytrace; |
| 429 |
|
samplendx++; |
| 430 |
|
rayclear(&r_queue[i]); |
| 431 |
|
rayvalue(&r_queue[i]); |
| 452 |
|
nadd = MAX_NPROCS - ray_pnprocs; |
| 453 |
|
if (nadd <= 0) |
| 454 |
|
return; |
| 455 |
< |
fflush(stderr); /* clear pending output */ |
| 456 |
< |
fflush(stdout); |
| 455 |
> |
ambsync(); /* load any new ambient values */ |
| 456 |
> |
fflush(NULL); /* clear pending output */ |
| 457 |
|
while (nadd--) { /* fork each new process */ |
| 458 |
|
int p0[2], p1[2]; |
| 459 |
|
if (pipe(p0) < 0 || pipe(p1) < 0) |
| 471 |
|
if (r_proc[ray_pnprocs].pid < 0) |
| 472 |
|
error(SYSTEM, "cannot fork child process"); |
| 473 |
|
close(p1[0]); close(p0[1]); |
| 474 |
+ |
/* |
| 475 |
+ |
* Close write stream on exec to avoid multiprocessing deadlock. |
| 476 |
+ |
* No use in read stream without it, so set flag there as well. |
| 477 |
+ |
*/ |
| 478 |
+ |
fcntl(p1[1], F_SETFD, FD_CLOEXEC); |
| 479 |
+ |
fcntl(p0[0], F_SETFD, FD_CLOEXEC); |
| 480 |
|
r_proc[ray_pnprocs].fd_send = p1[1]; |
| 481 |
|
r_proc[ray_pnprocs].fd_recv = p0[0]; |
| 482 |
|
r_proc[ray_pnprocs].npending = 0; |
| 509 |
|
ray_pnprocs--; |
| 510 |
|
close(r_proc[ray_pnprocs].fd_recv); |
| 511 |
|
close(r_proc[ray_pnprocs].fd_send); |
| 512 |
< |
while (wait(&status) != r_proc[ray_pnprocs].pid) |
| 513 |
< |
; |
| 512 |
> |
if (waitpid(r_proc[ray_pnprocs].pid, &status, 0) < 0) |
| 513 |
> |
status = 127<<8; |
| 514 |
|
if (status) { |
| 515 |
|
sprintf(errmsg, |
| 516 |
|
"rendering process %d exited with code %d", |
| 527 |
|
quit(ec) /* make sure exit is called */ |
| 528 |
|
int ec; |
| 529 |
|
{ |
| 530 |
+ |
if (ray_pnprocs > 0) /* close children if any */ |
| 531 |
+ |
ray_pclose(0); |
| 532 |
|
exit(ec); |
| 533 |
|
} |