| 1 | 
greg | 
2.19 | 
{ RCSid $Id: rayinit.cal,v 2.18 2018/11/30 18:43:57 greg Exp $ } | 
| 2 | 
greg | 
1.1 | 
{ | 
| 3 | 
  | 
  | 
        Initialization file for Radiance. | 
| 4 | 
  | 
  | 
 | 
| 5 | 
  | 
  | 
        The following are predefined: | 
| 6 | 
  | 
  | 
 | 
| 7 | 
  | 
  | 
        Dx, Dy, Dz                      - ray direction | 
| 8 | 
  | 
  | 
        Nx, Ny, Nz                      - surface normal | 
| 9 | 
  | 
  | 
        Px, Py, Pz                      - intersection point | 
| 10 | 
  | 
  | 
        T                               - distance from start | 
| 11 | 
greg | 
2.3 | 
        Ts                              - single ray (shadow) distance | 
| 12 | 
greg | 
1.1 | 
        Rdot                            - ray dot product | 
| 13 | 
  | 
  | 
        S                               - world scale | 
| 14 | 
  | 
  | 
        Tx, Ty, Tz                      - world origin | 
| 15 | 
  | 
  | 
        Ix, Iy, Iz                      - world i unit vector | 
| 16 | 
  | 
  | 
        Jx, Jy, Jz                      - world j unit vector | 
| 17 | 
  | 
  | 
        Kx, Ky, Kz                      - world k unit vector | 
| 18 | 
  | 
  | 
        arg(n)                          - real arguments, arg(0) is count | 
| 19 | 
greg | 
2.14 | 
 | 
| 20 | 
  | 
  | 
        For mesh objects, the following are available: | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
        Lu, Lv                          - local (u,v) coordinates | 
| 23 | 
greg | 
1.1 | 
 | 
| 24 | 
greg | 
2.15 | 
        For *func & *data materials, the following are also available: | 
| 25 | 
greg | 
1.1 | 
 | 
| 26 | 
  | 
  | 
        NxP, NyP, NzP                   - perturbed surface normal | 
| 27 | 
  | 
  | 
        RdotP                           - perturbed ray dot product | 
| 28 | 
  | 
  | 
        CrP, CgP, CbP                   - perturbed material color | 
| 29 | 
  | 
  | 
 | 
| 30 | 
greg | 
2.9 | 
        For prism1 and prism2 types, the following are available: | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
        DxA, DyA, DzA                   - direction to target light source | 
| 33 | 
  | 
  | 
 | 
| 34 | 
greg | 
1.1 | 
        Library functions: | 
| 35 | 
  | 
  | 
 | 
| 36 | 
  | 
  | 
        if(a, b, c)                     - if a positive, return b, else c | 
| 37 | 
  | 
  | 
 | 
| 38 | 
  | 
  | 
        select(N, a1, a2, ..)           - return aN | 
| 39 | 
  | 
  | 
 | 
| 40 | 
greg | 
2.19 | 
        min(a1, a2, ..)                 - return minimum argument | 
| 41 | 
  | 
  | 
        max(a1, a2, ..)                 - return maximum argument | 
| 42 | 
  | 
  | 
 | 
| 43 | 
greg | 
1.1 | 
        sqrt(x)                         - square root function | 
| 44 | 
  | 
  | 
 | 
| 45 | 
  | 
  | 
        sin(x), cos(x), tan(x), | 
| 46 | 
  | 
  | 
        asin(x), acos(x), | 
| 47 | 
greg | 
2.15 | 
        atan(x), atan2(y,x)             - standard trig functions (radians) | 
| 48 | 
greg | 
1.1 | 
 | 
| 49 | 
  | 
  | 
        floor(x), ceil(x)               - g.l.b. & l.u.b. | 
| 50 | 
  | 
  | 
 | 
| 51 | 
  | 
  | 
        exp(x), log(x), log10(x)        - exponent and log functions | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
        erf(z), erfc(z)                 - error functions | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
        rand(x)                         - pseudo-random function (0 to 1) | 
| 56 | 
  | 
  | 
 | 
| 57 | 
greg | 
2.11 | 
        noise3(x,y,z), noise3x(x,y,z), | 
| 58 | 
  | 
  | 
        noise3y(x,y,z), noise3z(x,y,z)  - noise function with gradient (-1 to 1) | 
| 59 | 
greg | 
1.1 | 
 | 
| 60 | 
  | 
  | 
        fnoise3(x,y,z)                  - fractal noise function (-1 to 1) | 
| 61 | 
  | 
  | 
} | 
| 62 | 
  | 
  | 
 | 
| 63 | 
  | 
  | 
                        { Backward compatibility } | 
| 64 | 
  | 
  | 
AC = arg(0); | 
| 65 | 
  | 
  | 
A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5); | 
| 66 | 
  | 
  | 
A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10); | 
| 67 | 
  | 
  | 
 | 
| 68 | 
greg | 
2.11 | 
noise3a(x,y,z) : noise3x(x,y,z); | 
| 69 | 
  | 
  | 
noise3b(x,y,z) : noise3y(x,y,z); | 
| 70 | 
  | 
  | 
noise3c(x,y,z) : noise3z(x,y,z); | 
| 71 | 
  | 
  | 
 | 
| 72 | 
greg | 
1.1 | 
                        { Forward compatibility (?) } | 
| 73 | 
  | 
  | 
D(i) = select(i, Dx, Dy, Dz); | 
| 74 | 
  | 
  | 
N(i) = select(i, Nx, Ny, Nz); | 
| 75 | 
  | 
  | 
P(i) = select(i, Px, Py, Pz); | 
| 76 | 
greg | 
2.11 | 
noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z)); | 
| 77 | 
greg | 
1.1 | 
 | 
| 78 | 
  | 
  | 
                        { More robust versions of library functions } | 
| 79 | 
  | 
  | 
bound(a,x,b) : if(a-x, a, if(x-b, b, x)); | 
| 80 | 
  | 
  | 
Acos(x) : acos(bound(-1,x,1)); | 
| 81 | 
  | 
  | 
Asin(x) : asin(bound(-1,x,1)); | 
| 82 | 
greg | 
2.8 | 
Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0); | 
| 83 | 
greg | 
2.2 | 
Exp(x) : if(-x-100, 0, exp(x)); | 
| 84 | 
greg | 
1.1 | 
Sqrt(x) : if(x, sqrt(x), 0); | 
| 85 | 
  | 
  | 
 | 
| 86 | 
  | 
  | 
                        { Useful constants } | 
| 87 | 
  | 
  | 
PI : 3.14159265358979323846; | 
| 88 | 
  | 
  | 
DEGREE : PI/180; | 
| 89 | 
  | 
  | 
FTINY : 1e-7; | 
| 90 | 
  | 
  | 
 | 
| 91 | 
  | 
  | 
                        { Useful functions } | 
| 92 | 
  | 
  | 
and(a,b) : if( a, b, a ); | 
| 93 | 
  | 
  | 
or(a,b) : if( a, a, b ); | 
| 94 | 
  | 
  | 
not(a) : if( a, -1, 1 ); | 
| 95 | 
greg | 
2.13 | 
xor(a,b) : if( a, not(b), b ); | 
| 96 | 
greg | 
1.1 | 
abs(x) : if( x, x, -x ); | 
| 97 | 
  | 
  | 
sgn(x) : if( x, 1, if(-x, -1, 0) ); | 
| 98 | 
  | 
  | 
sq(x) : x*x; | 
| 99 | 
  | 
  | 
inside(a,x,b) : and(x-a,b-x); | 
| 100 | 
  | 
  | 
frac(x) : x - floor(x); | 
| 101 | 
  | 
  | 
mod(n,d) : n - floor(n/d)*d; | 
| 102 | 
  | 
  | 
tri(n,d) : abs( d - mod(n-d,2*d) ); | 
| 103 | 
  | 
  | 
linterp(t,p0,p1) : (1-t)*p0 + t*p1; | 
| 104 | 
  | 
  | 
 | 
| 105 | 
gwlarson | 
2.12 | 
noop(v) : v; | 
| 106 | 
  | 
  | 
clip(v) : bound(0,v,1); | 
| 107 | 
  | 
  | 
noneg(v) : if(v,v,0); | 
| 108 | 
  | 
  | 
red(r,g,b) : if(r,r,0); | 
| 109 | 
  | 
  | 
green(r,g,b) : if(g,g,0); | 
| 110 | 
  | 
  | 
blue(r,g,b) : if(b,b,0); | 
| 111 | 
  | 
  | 
grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b); | 
| 112 | 
  | 
  | 
clip_r(r,g,b) : bound(0,r,1); | 
| 113 | 
  | 
  | 
clip_g(r,g,b) : bound(0,g,1); | 
| 114 | 
  | 
  | 
clip_b(r,g,b) : bound(0,b,1); | 
| 115 | 
  | 
  | 
clipgrey(r,g,b) : min(grey(r,g,b),1); | 
| 116 | 
greg | 
1.1 | 
 | 
| 117 | 
  | 
  | 
dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3); | 
| 118 | 
  | 
  | 
cross(i,v1,v2) : select(i,      v1(2)*v2(3) - v1(3)*v2(2), | 
| 119 | 
  | 
  | 
                                v1(3)*v2(1) - v1(1)*v2(3), | 
| 120 | 
  | 
  | 
                                v1(1)*v2(2) - v1(2)*v2(1)); | 
| 121 | 
  | 
  | 
 | 
| 122 | 
gwlarson | 
2.12 | 
fade(near_val,far_val,dist) : far_val + | 
| 123 | 
greg | 
1.1 | 
                if (16-dist, (near_val-far_val)/(1+dist*dist), 0); | 
| 124 | 
  | 
  | 
 | 
| 125 | 
greg | 
2.16 | 
hermite(p0,p1,r0,r1,t) :        p0 * ((2*t-3)*t*t+1) + | 
| 126 | 
  | 
  | 
                                p1 * (-2*t+3)*t*t + | 
| 127 | 
  | 
  | 
                                r0 * (((t-2)*t+1)*t) + | 
| 128 | 
  | 
  | 
                                r1 * ((t-1)*t*t); | 
| 129 | 
  | 
  | 
 | 
| 130 | 
gwlarson | 
2.12 | 
bezier(p1, p2, p3, p4, t) :     p1 * (1+t*(-3+t*(3-t))) + | 
| 131 | 
greg | 
1.1 | 
                                p2 * 3*t*(1+t*(-2+t)) + | 
| 132 | 
  | 
  | 
                                p3 * 3*t*t*(1-t) + | 
| 133 | 
  | 
  | 
                                p4 * t*t*t ; | 
| 134 | 
  | 
  | 
 | 
| 135 | 
gwlarson | 
2.12 | 
bspline(pp, p0, p1, pn, t) :    pp * (1/6+t*(-.5+t*(.5-1/6*t))) + | 
| 136 | 
greg | 
1.1 | 
                                p0 * (2/3+t*t*(-1+.5*t)) + | 
| 137 | 
  | 
  | 
                                p1 * (1/6+t*(.5+t*(.5-.5*t))) + | 
| 138 | 
  | 
  | 
                                pn * (1/6*t*t*t) ; | 
| 139 | 
  | 
  | 
 | 
| 140 | 
gwlarson | 
2.12 | 
turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) + | 
| 141 | 
greg | 
1.1 | 
                                                turbulence(x,y,z,2*s) ); | 
| 142 | 
gwlarson | 
2.12 | 
turbulencex(x,y,z,s) : if( s-1.01, 0, | 
| 143 | 
greg | 
2.11 | 
                        sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) + | 
| 144 | 
gwlarson | 
2.12 | 
                        turbulencex(x,y,z,2*s) ); | 
| 145 | 
  | 
  | 
turbulencey(x,y,z,s) : if( s-1.01, 0, | 
| 146 | 
greg | 
2.11 | 
                        sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) + | 
| 147 | 
gwlarson | 
2.12 | 
                        turbulencey(x,y,z,2*s) ); | 
| 148 | 
  | 
  | 
turbulencez(x,y,z,s) : if( s-1.01, 0, | 
| 149 | 
greg | 
2.11 | 
                        sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) + | 
| 150 | 
gwlarson | 
2.12 | 
                        turbulencez(x,y,z,2*s) ); | 
| 151 | 
greg | 
1.2 | 
 | 
| 152 | 
greg | 
1.3 | 
                        { Normal distribution from uniform range (0,1) } | 
| 153 | 
  | 
  | 
 | 
| 154 | 
greg | 
2.17 | 
un2`P.(t) : t - (2.515517+t*(.802853+t*.010328))/ | 
| 155 | 
greg | 
1.3 | 
                (1+t*(1.432788+t*(.189269+t*.001308))) ; | 
| 156 | 
greg | 
2.17 | 
un1`P.(p) : un2`P.(sqrt(-2*log(p))) ; | 
| 157 | 
greg | 
1.3 | 
 | 
| 158 | 
greg | 
2.17 | 
unif2norm(p) : if( .5-p, -un1`P.(p), un1`P.(1-p) ) ; | 
| 159 | 
greg | 
1.3 | 
 | 
| 160 | 
  | 
  | 
nrand(x) = unif2norm(rand(x)); | 
| 161 | 
  | 
  | 
 | 
| 162 | 
greg | 
1.2 | 
                        { Local (u,v) coordinates for planar surfaces } | 
| 163 | 
greg | 
2.17 | 
crosslen`P. = Nx*Nx + Ny*Ny; | 
| 164 | 
greg | 
2.7 | 
                        { U is distance from projected Z-axis } | 
| 165 | 
greg | 
2.17 | 
U = if( crosslen`P. - FTINY, | 
| 166 | 
  | 
  | 
                (Py*Nx - Px*Ny)/crosslen`P., | 
| 167 | 
greg | 
1.2 | 
                Px); | 
| 168 | 
  | 
  | 
                        { V is defined so that N = U x V } | 
| 169 | 
greg | 
2.17 | 
V = if( crosslen`P. - FTINY, | 
| 170 | 
  | 
  | 
                Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P., | 
| 171 | 
greg | 
1.2 | 
                Py); | 
| 172 | 
greg | 
2.18 | 
 | 
| 173 | 
  | 
  | 
                        { Local hemisphere direction for *func & *data types } | 
| 174 | 
  | 
  | 
                        { last 3 real args = unnormalized up-vector } | 
| 175 | 
  | 
  | 
Vux`P. = arg(AC-1)*NzP - arg(AC)*NyP; | 
| 176 | 
  | 
  | 
Vuy`P. = arg(AC)*NxP - arg(AC-2)*NzP; | 
| 177 | 
  | 
  | 
Vuz`P. = arg(AC-2)*NyP - arg(AC-1)*NxP; | 
| 178 | 
  | 
  | 
vnorm`P. = 1/sqrt(Vux`P.*Vux`P. + Vuy`P.*Vuy`P. + Vuz`P.*Vuz`P.); | 
| 179 | 
  | 
  | 
Vnx`P. = Vux`P.*vnorm`P.; | 
| 180 | 
  | 
  | 
Vny`P. = Vuy`P.*vnorm`P.; | 
| 181 | 
  | 
  | 
Vnz`P. = Vuz`P.*vnorm`P.; | 
| 182 | 
  | 
  | 
Unx`P. = NyP*Vnz`P. - NzP*Vny`P.; | 
| 183 | 
  | 
  | 
Uny`P. = NzP*Vnx`P. - NxP*Vnz`P.; | 
| 184 | 
  | 
  | 
Unz`P. = NxP*Vny`P. - NyP*Vnx`P.; | 
| 185 | 
  | 
  | 
                        { Transform vectors, normalized (dx,dy,dz) away from surf } | 
| 186 | 
  | 
  | 
Ldx(dx,dy,dz) = dx*Unx`P. + dy*Uny`P. + dz*Unz`P.; | 
| 187 | 
  | 
  | 
Ldy(dx,dy,dz) = dx*Vnx`P. + dy*Vny`P. + dz*Vnz`P.; | 
| 188 | 
  | 
  | 
Ldz(dx,dy,dz) = dx*NxP + dy*NyP + dz*NzP; | 
| 189 | 
  | 
  | 
                        { Incident vector transformed to our coords } | 
| 190 | 
  | 
  | 
Idx = Ldx(-Dx,-Dy,-Dz); | 
| 191 | 
  | 
  | 
Idy = Ldy(-Dx,-Dy,-Dz); | 
| 192 | 
  | 
  | 
Idz = RdotP; |