| 1 |
greg |
2.17 |
{ RCSid $Id: rayinit.cal,v 2.16 2013/10/08 18:59:44 greg Exp $ }
|
| 2 |
greg |
1.1 |
{
|
| 3 |
|
|
Initialization file for Radiance.
|
| 4 |
|
|
|
| 5 |
|
|
The following are predefined:
|
| 6 |
|
|
|
| 7 |
|
|
Dx, Dy, Dz - ray direction
|
| 8 |
|
|
Nx, Ny, Nz - surface normal
|
| 9 |
|
|
Px, Py, Pz - intersection point
|
| 10 |
|
|
T - distance from start
|
| 11 |
greg |
2.3 |
Ts - single ray (shadow) distance
|
| 12 |
greg |
1.1 |
Rdot - ray dot product
|
| 13 |
|
|
S - world scale
|
| 14 |
|
|
Tx, Ty, Tz - world origin
|
| 15 |
|
|
Ix, Iy, Iz - world i unit vector
|
| 16 |
|
|
Jx, Jy, Jz - world j unit vector
|
| 17 |
|
|
Kx, Ky, Kz - world k unit vector
|
| 18 |
|
|
arg(n) - real arguments, arg(0) is count
|
| 19 |
greg |
2.14 |
|
| 20 |
|
|
For mesh objects, the following are available:
|
| 21 |
|
|
|
| 22 |
|
|
Lu, Lv - local (u,v) coordinates
|
| 23 |
greg |
1.1 |
|
| 24 |
greg |
2.15 |
For *func & *data materials, the following are also available:
|
| 25 |
greg |
1.1 |
|
| 26 |
|
|
NxP, NyP, NzP - perturbed surface normal
|
| 27 |
|
|
RdotP - perturbed ray dot product
|
| 28 |
|
|
CrP, CgP, CbP - perturbed material color
|
| 29 |
|
|
|
| 30 |
greg |
2.9 |
For prism1 and prism2 types, the following are available:
|
| 31 |
|
|
|
| 32 |
|
|
DxA, DyA, DzA - direction to target light source
|
| 33 |
|
|
|
| 34 |
greg |
1.1 |
Library functions:
|
| 35 |
|
|
|
| 36 |
|
|
if(a, b, c) - if a positive, return b, else c
|
| 37 |
|
|
|
| 38 |
|
|
select(N, a1, a2, ..) - return aN
|
| 39 |
|
|
|
| 40 |
|
|
sqrt(x) - square root function
|
| 41 |
|
|
|
| 42 |
|
|
sin(x), cos(x), tan(x),
|
| 43 |
|
|
asin(x), acos(x),
|
| 44 |
greg |
2.15 |
atan(x), atan2(y,x) - standard trig functions (radians)
|
| 45 |
greg |
1.1 |
|
| 46 |
|
|
floor(x), ceil(x) - g.l.b. & l.u.b.
|
| 47 |
|
|
|
| 48 |
|
|
exp(x), log(x), log10(x) - exponent and log functions
|
| 49 |
|
|
|
| 50 |
|
|
erf(z), erfc(z) - error functions
|
| 51 |
|
|
|
| 52 |
|
|
rand(x) - pseudo-random function (0 to 1)
|
| 53 |
|
|
|
| 54 |
greg |
2.11 |
noise3(x,y,z), noise3x(x,y,z),
|
| 55 |
|
|
noise3y(x,y,z), noise3z(x,y,z) - noise function with gradient (-1 to 1)
|
| 56 |
greg |
1.1 |
|
| 57 |
|
|
fnoise3(x,y,z) - fractal noise function (-1 to 1)
|
| 58 |
|
|
}
|
| 59 |
|
|
|
| 60 |
|
|
{ Backward compatibility }
|
| 61 |
|
|
AC = arg(0);
|
| 62 |
|
|
A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
|
| 63 |
|
|
A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
|
| 64 |
|
|
|
| 65 |
greg |
2.11 |
noise3a(x,y,z) : noise3x(x,y,z);
|
| 66 |
|
|
noise3b(x,y,z) : noise3y(x,y,z);
|
| 67 |
|
|
noise3c(x,y,z) : noise3z(x,y,z);
|
| 68 |
|
|
|
| 69 |
greg |
1.1 |
{ Forward compatibility (?) }
|
| 70 |
|
|
D(i) = select(i, Dx, Dy, Dz);
|
| 71 |
|
|
N(i) = select(i, Nx, Ny, Nz);
|
| 72 |
|
|
P(i) = select(i, Px, Py, Pz);
|
| 73 |
greg |
2.11 |
noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z));
|
| 74 |
greg |
1.1 |
|
| 75 |
|
|
{ More robust versions of library functions }
|
| 76 |
|
|
bound(a,x,b) : if(a-x, a, if(x-b, b, x));
|
| 77 |
|
|
Acos(x) : acos(bound(-1,x,1));
|
| 78 |
|
|
Asin(x) : asin(bound(-1,x,1));
|
| 79 |
greg |
2.8 |
Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0);
|
| 80 |
greg |
2.2 |
Exp(x) : if(-x-100, 0, exp(x));
|
| 81 |
greg |
1.1 |
Sqrt(x) : if(x, sqrt(x), 0);
|
| 82 |
|
|
|
| 83 |
|
|
{ Useful constants }
|
| 84 |
|
|
PI : 3.14159265358979323846;
|
| 85 |
|
|
DEGREE : PI/180;
|
| 86 |
|
|
FTINY : 1e-7;
|
| 87 |
|
|
|
| 88 |
|
|
{ Useful functions }
|
| 89 |
|
|
and(a,b) : if( a, b, a );
|
| 90 |
|
|
or(a,b) : if( a, a, b );
|
| 91 |
|
|
not(a) : if( a, -1, 1 );
|
| 92 |
greg |
2.13 |
xor(a,b) : if( a, not(b), b );
|
| 93 |
greg |
1.1 |
abs(x) : if( x, x, -x );
|
| 94 |
|
|
sgn(x) : if( x, 1, if(-x, -1, 0) );
|
| 95 |
|
|
sq(x) : x*x;
|
| 96 |
|
|
max(a,b) : if( a-b, a, b );
|
| 97 |
|
|
min(a,b) : if( a-b, b, a );
|
| 98 |
|
|
inside(a,x,b) : and(x-a,b-x);
|
| 99 |
|
|
frac(x) : x - floor(x);
|
| 100 |
|
|
mod(n,d) : n - floor(n/d)*d;
|
| 101 |
|
|
tri(n,d) : abs( d - mod(n-d,2*d) );
|
| 102 |
|
|
linterp(t,p0,p1) : (1-t)*p0 + t*p1;
|
| 103 |
|
|
|
| 104 |
gwlarson |
2.12 |
noop(v) : v;
|
| 105 |
|
|
clip(v) : bound(0,v,1);
|
| 106 |
|
|
noneg(v) : if(v,v,0);
|
| 107 |
|
|
red(r,g,b) : if(r,r,0);
|
| 108 |
|
|
green(r,g,b) : if(g,g,0);
|
| 109 |
|
|
blue(r,g,b) : if(b,b,0);
|
| 110 |
|
|
grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b);
|
| 111 |
|
|
clip_r(r,g,b) : bound(0,r,1);
|
| 112 |
|
|
clip_g(r,g,b) : bound(0,g,1);
|
| 113 |
|
|
clip_b(r,g,b) : bound(0,b,1);
|
| 114 |
|
|
clipgrey(r,g,b) : min(grey(r,g,b),1);
|
| 115 |
greg |
1.1 |
|
| 116 |
|
|
dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
|
| 117 |
|
|
cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2),
|
| 118 |
|
|
v1(3)*v2(1) - v1(1)*v2(3),
|
| 119 |
|
|
v1(1)*v2(2) - v1(2)*v2(1));
|
| 120 |
|
|
|
| 121 |
gwlarson |
2.12 |
fade(near_val,far_val,dist) : far_val +
|
| 122 |
greg |
1.1 |
if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
|
| 123 |
|
|
|
| 124 |
greg |
2.16 |
hermite(p0,p1,r0,r1,t) : p0 * ((2*t-3)*t*t+1) +
|
| 125 |
|
|
p1 * (-2*t+3)*t*t +
|
| 126 |
|
|
r0 * (((t-2)*t+1)*t) +
|
| 127 |
|
|
r1 * ((t-1)*t*t);
|
| 128 |
|
|
|
| 129 |
gwlarson |
2.12 |
bezier(p1, p2, p3, p4, t) : p1 * (1+t*(-3+t*(3-t))) +
|
| 130 |
greg |
1.1 |
p2 * 3*t*(1+t*(-2+t)) +
|
| 131 |
|
|
p3 * 3*t*t*(1-t) +
|
| 132 |
|
|
p4 * t*t*t ;
|
| 133 |
|
|
|
| 134 |
gwlarson |
2.12 |
bspline(pp, p0, p1, pn, t) : pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
|
| 135 |
greg |
1.1 |
p0 * (2/3+t*t*(-1+.5*t)) +
|
| 136 |
|
|
p1 * (1/6+t*(.5+t*(.5-.5*t))) +
|
| 137 |
|
|
pn * (1/6*t*t*t) ;
|
| 138 |
|
|
|
| 139 |
gwlarson |
2.12 |
turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
|
| 140 |
greg |
1.1 |
turbulence(x,y,z,2*s) );
|
| 141 |
gwlarson |
2.12 |
turbulencex(x,y,z,s) : if( s-1.01, 0,
|
| 142 |
greg |
2.11 |
sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) +
|
| 143 |
gwlarson |
2.12 |
turbulencex(x,y,z,2*s) );
|
| 144 |
|
|
turbulencey(x,y,z,s) : if( s-1.01, 0,
|
| 145 |
greg |
2.11 |
sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) +
|
| 146 |
gwlarson |
2.12 |
turbulencey(x,y,z,2*s) );
|
| 147 |
|
|
turbulencez(x,y,z,s) : if( s-1.01, 0,
|
| 148 |
greg |
2.11 |
sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) +
|
| 149 |
gwlarson |
2.12 |
turbulencez(x,y,z,2*s) );
|
| 150 |
greg |
1.2 |
|
| 151 |
greg |
1.3 |
{ Normal distribution from uniform range (0,1) }
|
| 152 |
|
|
|
| 153 |
greg |
2.17 |
un2`P.(t) : t - (2.515517+t*(.802853+t*.010328))/
|
| 154 |
greg |
1.3 |
(1+t*(1.432788+t*(.189269+t*.001308))) ;
|
| 155 |
greg |
2.17 |
un1`P.(p) : un2`P.(sqrt(-2*log(p))) ;
|
| 156 |
greg |
1.3 |
|
| 157 |
greg |
2.17 |
unif2norm(p) : if( .5-p, -un1`P.(p), un1`P.(1-p) ) ;
|
| 158 |
greg |
1.3 |
|
| 159 |
|
|
nrand(x) = unif2norm(rand(x));
|
| 160 |
|
|
|
| 161 |
greg |
1.2 |
{ Local (u,v) coordinates for planar surfaces }
|
| 162 |
greg |
2.17 |
crosslen`P. = Nx*Nx + Ny*Ny;
|
| 163 |
greg |
2.7 |
{ U is distance from projected Z-axis }
|
| 164 |
greg |
2.17 |
U = if( crosslen`P. - FTINY,
|
| 165 |
|
|
(Py*Nx - Px*Ny)/crosslen`P.,
|
| 166 |
greg |
1.2 |
Px);
|
| 167 |
|
|
{ V is defined so that N = U x V }
|
| 168 |
greg |
2.17 |
V = if( crosslen`P. - FTINY,
|
| 169 |
|
|
Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P.,
|
| 170 |
greg |
1.2 |
Py);
|