| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
|
|
static const char RCSid[] = "$Id$";
|
| 3 |
|
|
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* rayfifo.c - parallelize ray queue that respects order
|
| 6 |
|
|
*
|
| 7 |
|
|
* External symbols declared in ray.h
|
| 8 |
|
|
*/
|
| 9 |
|
|
|
| 10 |
|
|
#include "copyright.h"
|
| 11 |
|
|
|
| 12 |
|
|
/*
|
| 13 |
|
|
* These routines are essentially an adjunct to raypcalls.c, providing
|
| 14 |
|
|
* a convenient means to get first-in/first-out behavior from multiple
|
| 15 |
|
|
* processor cores. The interface is quite simple, with two functions
|
| 16 |
|
|
* and a callback, which must be defined by the calling program. The
|
| 17 |
|
|
* hand-off for finished rays is assigned to ray_fifo_out, which takes
|
| 18 |
|
|
* a single pointer to the finished ray and returns a non-negative
|
| 19 |
|
|
* integer. If there is an exceptional condition where termination
|
| 20 |
|
|
* is desired, a negative value may be returned.
|
| 21 |
|
|
*
|
| 22 |
|
|
* The ray_fifo_in() call takes a ray that has been initialized in
|
| 23 |
|
|
* the same manner as for the ray_trace() call, i.e., the origin,
|
| 24 |
|
|
* direction, and maximum length have been assigned. The ray number
|
| 25 |
|
|
* will be set according to the number of rays traced since the
|
| 26 |
|
|
* last call to ray_fifo_flush(). This final call completes all
|
| 27 |
|
|
* pending ray calculations and frees the FIFO buffer. If any of
|
| 28 |
|
|
* the automatic calls to the ray_fifo_out callback return a
|
| 29 |
|
|
* negative value, processing stops and -1 is returned.
|
| 30 |
|
|
*/
|
| 31 |
|
|
|
| 32 |
|
|
#include "ray.h"
|
| 33 |
|
|
#include <string.h>
|
| 34 |
|
|
|
| 35 |
|
|
int (*ray_fifo_out)(RAY *r) = NULL; /* ray output callback */
|
| 36 |
|
|
|
| 37 |
|
|
static RAY *r_fifo_buf = NULL; /* circular FIFO out buffer */
|
| 38 |
|
|
static int r_fifo_len = 0; /* allocated FIFO length */
|
| 39 |
|
|
static RNUMBER r_fifo_start = 1; /* first awaited ray */
|
| 40 |
|
|
static RNUMBER r_fifo_end = 1; /* one past FIFO last */
|
| 41 |
|
|
|
| 42 |
|
|
#define r_fifo(rn) (&r_fifo_buf[(rn)&(r_fifo_len-1)])
|
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
static void
|
| 46 |
|
|
ray_fifo_growbuf(void) /* double buffer size (or set to minimum if NULL) */
|
| 47 |
|
|
{
|
| 48 |
|
|
RAY *old_buf = r_fifo_buf;
|
| 49 |
|
|
int old_len = r_fifo_len;
|
| 50 |
|
|
int i;
|
| 51 |
|
|
|
| 52 |
|
|
if (r_fifo_buf == NULL)
|
| 53 |
|
|
r_fifo_len = 1<<4;
|
| 54 |
|
|
else
|
| 55 |
|
|
r_fifo_len <<= 1;
|
| 56 |
|
|
/* allocate new */
|
| 57 |
|
|
r_fifo_buf = (RAY *)calloc(r_fifo_len, sizeof(RAY));
|
| 58 |
|
|
if (r_fifo_buf == NULL)
|
| 59 |
|
|
error(SYSTEM, "out of memory in ray_fifo_growbuf");
|
| 60 |
|
|
if (old_buf == NULL)
|
| 61 |
|
|
return;
|
| 62 |
|
|
/* copy old & free */
|
| 63 |
|
|
for (i = r_fifo_start; i < r_fifo_end; i++)
|
| 64 |
|
|
*r_fifo(i) = old_buf[i&(old_len-1)];
|
| 65 |
|
|
|
| 66 |
|
|
free(old_buf);
|
| 67 |
|
|
}
|
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
static int
|
| 71 |
|
|
ray_fifo_push( /* send finished ray to output (or queue it) */
|
| 72 |
|
|
RAY *r
|
| 73 |
|
|
)
|
| 74 |
|
|
{
|
| 75 |
|
|
int rv, nsent = 0;
|
| 76 |
|
|
|
| 77 |
|
|
if (ray_fifo_out == NULL)
|
| 78 |
|
|
error(INTERNAL, "ray_fifo_out is NULL");
|
| 79 |
|
|
if ((r->rno < r_fifo_start) | (r->rno >= r_fifo_end))
|
| 80 |
|
|
error(INTERNAL, "unexpected ray number in ray_fifo_push");
|
| 81 |
|
|
|
| 82 |
|
|
if (r->rno > r_fifo_start) { /* insert into output queue */
|
| 83 |
|
|
if (r->rno - r_fifo_start >= r_fifo_len)
|
| 84 |
|
|
ray_fifo_growbuf();
|
| 85 |
|
|
*r_fifo(r->rno) = *r;
|
| 86 |
|
|
return(0);
|
| 87 |
|
|
}
|
| 88 |
|
|
/* r->rno == r_fifo_start, so transfer ray(s) */
|
| 89 |
|
|
do {
|
| 90 |
|
|
if ((rv = (*ray_fifo_out)(r)) < 0)
|
| 91 |
|
|
return(-1);
|
| 92 |
|
|
nsent += rv;
|
| 93 |
|
|
if (++r_fifo_start < r_fifo_end)
|
| 94 |
|
|
r = r_fifo(r_fifo_start);
|
| 95 |
|
|
} while (r->rno == r_fifo_start);
|
| 96 |
|
|
|
| 97 |
|
|
return(nsent);
|
| 98 |
|
|
}
|
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
int
|
| 102 |
|
|
ray_fifo_in( /* add ray to FIFO */
|
| 103 |
|
|
RAY *r
|
| 104 |
|
|
)
|
| 105 |
|
|
{
|
| 106 |
|
|
int rv, rval = 0;
|
| 107 |
|
|
|
| 108 |
|
|
if (r_fifo_start >= 1L<<30) { /* reset our counter */
|
| 109 |
|
|
if ((rv = ray_fifo_flush()) < 0)
|
| 110 |
|
|
return(-1);
|
| 111 |
|
|
rval += rv;
|
| 112 |
|
|
}
|
| 113 |
|
|
/* queue ray */
|
| 114 |
|
|
rayorigin(r, PRIMARY, NULL, NULL);
|
| 115 |
|
|
r->rno = r_fifo_end++;
|
| 116 |
|
|
if ((rv = ray_pqueue(r)) < 0)
|
| 117 |
|
|
return(-1);
|
| 118 |
|
|
|
| 119 |
|
|
if (!rv) /* no result this time? */
|
| 120 |
|
|
return(rval);
|
| 121 |
|
|
/* else send/queue result */
|
| 122 |
|
|
if ((rv = ray_fifo_push(r)) < 0)
|
| 123 |
|
|
return(-1);
|
| 124 |
|
|
rval += rv;
|
| 125 |
|
|
return(rval);
|
| 126 |
|
|
}
|
| 127 |
|
|
|
| 128 |
|
|
|
| 129 |
|
|
int
|
| 130 |
|
|
ray_fifo_flush(void) /* flush everything and release buffer */
|
| 131 |
|
|
{
|
| 132 |
|
|
RAY myRay;
|
| 133 |
|
|
int rv, rval = 0;
|
| 134 |
|
|
/* clear parallel queue */
|
| 135 |
|
|
while ((rv = ray_presult(&myRay, 0)) > 0 &&
|
| 136 |
|
|
(rv = ray_fifo_push(&myRay)) >= 0)
|
| 137 |
|
|
rval += rv;
|
| 138 |
|
|
|
| 139 |
|
|
if (rv < 0) /* check for error */
|
| 140 |
|
|
return(-1);
|
| 141 |
|
|
|
| 142 |
|
|
if (r_fifo_start != r_fifo_end)
|
| 143 |
|
|
error(INTERNAL, "could not empty queue in ray_fifo_flush");
|
| 144 |
|
|
|
| 145 |
|
|
free(r_fifo_buf);
|
| 146 |
|
|
r_fifo_buf = NULL;
|
| 147 |
|
|
r_fifo_len = 0;
|
| 148 |
|
|
r_fifo_end = r_fifo_start = 1;
|
| 149 |
|
|
|
| 150 |
|
|
return(rval);
|
| 151 |
|
|
}
|