| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: pmutil.c,v 2.5 2020/04/08 15:14:21 rschregle Exp $"; |
| 3 |
#endif |
| 4 |
|
| 5 |
/* |
| 6 |
====================================================================== |
| 7 |
Photon map utilities |
| 8 |
|
| 9 |
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
| 10 |
(c) Fraunhofer Institute for Solar Energy Systems, |
| 11 |
(c) Lucerne University of Applied Sciences and Arts, |
| 12 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
| 13 |
====================================================================== |
| 14 |
|
| 15 |
$Id: pmutil.c,v 2.5 2020/04/08 15:14:21 rschregle Exp $ |
| 16 |
*/ |
| 17 |
|
| 18 |
#include "pmap.h" |
| 19 |
#include "pmapio.h" |
| 20 |
#include "pmapbias.h" |
| 21 |
#include "otypes.h" |
| 22 |
#include <sys/stat.h> |
| 23 |
|
| 24 |
|
| 25 |
extern char *octname; |
| 26 |
|
| 27 |
|
| 28 |
/* Photon map lookup functions per type */ |
| 29 |
void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { |
| 30 |
photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, |
| 31 |
photonDensity, photonDensity |
| 32 |
}; |
| 33 |
|
| 34 |
|
| 35 |
|
| 36 |
|
| 37 |
void colorNorm (COLOR c) |
| 38 |
/* Normalise colour channels to average of 1 */ |
| 39 |
{ |
| 40 |
const float avg = colorAvg(c); |
| 41 |
|
| 42 |
if (!avg) |
| 43 |
return; |
| 44 |
|
| 45 |
c [0] /= avg; |
| 46 |
c [1] /= avg; |
| 47 |
c [2] /= avg; |
| 48 |
} |
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
|
| 53 |
void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) |
| 54 |
{ |
| 55 |
unsigned t; |
| 56 |
struct stat octstat, pmstat; |
| 57 |
PhotonMap *pm; |
| 58 |
PhotonMapType type; |
| 59 |
|
| 60 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 61 |
if (setPmapParam(&pm, parm + t)) { |
| 62 |
/* Check if photon map newer than octree */ |
| 63 |
if (pm -> fileName && octname && |
| 64 |
!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && |
| 65 |
octstat.st_mtime > pmstat.st_mtime) { |
| 66 |
sprintf(errmsg, "photon map in file %s may be stale", |
| 67 |
pm -> fileName); |
| 68 |
error(USER, errmsg); |
| 69 |
} |
| 70 |
|
| 71 |
/* Load photon map from file and get its type */ |
| 72 |
if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) |
| 73 |
error(USER, "failed loading photon map"); |
| 74 |
|
| 75 |
/* Assign to appropriate photon map type (deleting previously |
| 76 |
* loaded photon map of same type if necessary) */ |
| 77 |
if (pmaps [type]) { |
| 78 |
sprintf(errmsg, "multiple %s photon maps, dropping previous", |
| 79 |
pmapName [type]); |
| 80 |
error(WARNING, errmsg); |
| 81 |
deletePhotons(pmaps [type]); |
| 82 |
free(pmaps [type]); |
| 83 |
} |
| 84 |
pmaps [type] = pm; |
| 85 |
|
| 86 |
/* Check for valid density estimate bandwidths */ |
| 87 |
if ((pm -> minGather > 1 || pm -> maxGather > 1) && |
| 88 |
(type == PMAP_TYPE_PRECOMP)) { |
| 89 |
/* Force bwidth to 1 for precomputed pmap */ |
| 90 |
error(WARNING, "ignoring bandwidth for precomp photon map"); |
| 91 |
pm -> minGather = pm -> maxGather = 1; |
| 92 |
} |
| 93 |
|
| 94 |
if ((pm -> maxGather > pm -> minGather) && |
| 95 |
(type == PMAP_TYPE_VOLUME)) { |
| 96 |
/* Biascomp for volume pmaps (see volumePhotonDensity() below) |
| 97 |
is considered redundant, and there's probably no point in |
| 98 |
recovering by using the lower bandwidth, since it's probably |
| 99 |
not what the user wants, so bail out. */ |
| 100 |
sprintf(errmsg, |
| 101 |
"bias compensation is not available with %s photon maps", |
| 102 |
pmapName [type]); |
| 103 |
error(USER, errmsg); |
| 104 |
} |
| 105 |
|
| 106 |
if (pm -> maxGather > pm -> numPhotons) { |
| 107 |
/* Clamp lookup bandwidth to total number of photons (minus one, |
| 108 |
since density estimate gets extra photon to obtain averaged |
| 109 |
radius) */ |
| 110 |
sprintf( |
| 111 |
errmsg, "clamping density estimate bandwidth to %ld", |
| 112 |
pm -> numPhotons |
| 113 |
); |
| 114 |
error(WARNING, errmsg); |
| 115 |
pm -> minGather = pm -> maxGather = pm -> numPhotons - 1; |
| 116 |
} |
| 117 |
} |
| 118 |
} |
| 119 |
|
| 120 |
|
| 121 |
|
| 122 |
void cleanUpPmaps (PhotonMap **pmaps) |
| 123 |
{ |
| 124 |
unsigned t; |
| 125 |
|
| 126 |
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
| 127 |
if (pmaps [t]) { |
| 128 |
deletePhotons(pmaps [t]); |
| 129 |
free(pmaps [t]); |
| 130 |
} |
| 131 |
} |
| 132 |
} |
| 133 |
|
| 134 |
|
| 135 |
|
| 136 |
|
| 137 |
void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
| 138 |
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
| 139 |
{ |
| 140 |
unsigned i; |
| 141 |
float r2; |
| 142 |
COLOR flux; |
| 143 |
Photon *photon; |
| 144 |
const PhotonSearchQueueNode *sqn; |
| 145 |
|
| 146 |
setcolor(irrad, 0, 0, 0); |
| 147 |
|
| 148 |
if (!pmap -> maxGather) |
| 149 |
return; |
| 150 |
|
| 151 |
/* Ignore sources */ |
| 152 |
if (ray -> ro && islight(objptr(ray -> ro -> omod) -> otype)) |
| 153 |
return; |
| 154 |
|
| 155 |
findPhotons(pmap, ray); |
| 156 |
|
| 157 |
/* Need at least 2 photons */ |
| 158 |
if (pmap -> squeue.tail < 2) { |
| 159 |
#ifdef PMAP_NONEFOUND |
| 160 |
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", |
| 161 |
ray -> ro ? ray -> ro -> oname : "<null>", |
| 162 |
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
| 163 |
error(WARNING, errmsg); |
| 164 |
#endif |
| 165 |
|
| 166 |
return; |
| 167 |
} |
| 168 |
|
| 169 |
if (pmap -> minGather == pmap -> maxGather) { |
| 170 |
/* No bias compensation. Just do a plain vanilla estimate */ |
| 171 |
sqn = pmap -> squeue.node + 1; |
| 172 |
|
| 173 |
/* Average radius^2 between furthest two photons to improve accuracy */ |
| 174 |
r2 = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 175 |
r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); |
| 176 |
|
| 177 |
/* Skip the extra photon */ |
| 178 |
for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) { |
| 179 |
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); |
| 180 |
getPhotonFlux(photon, flux); |
| 181 |
#ifdef PMAP_EPANECHNIKOV |
| 182 |
/* Apply Epanechnikov kernel to photon flux based on photon dist */ |
| 183 |
scalecolor(flux, 2 * (1 - sqn -> dist2 / r2)); |
| 184 |
#endif |
| 185 |
addcolor(irrad, flux); |
| 186 |
} |
| 187 |
|
| 188 |
/* Divide by search area PI * r^2, 1 / PI required as ambient |
| 189 |
normalisation factor */ |
| 190 |
scalecolor(irrad, 1 / (PI * PI * r2)); |
| 191 |
|
| 192 |
return; |
| 193 |
} |
| 194 |
else |
| 195 |
/* Apply bias compensation to density estimate */ |
| 196 |
biasComp(pmap, irrad); |
| 197 |
} |
| 198 |
|
| 199 |
|
| 200 |
|
| 201 |
|
| 202 |
void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) |
| 203 |
/* Returns precomputed photon density estimate at ray -> rop. */ |
| 204 |
{ |
| 205 |
Photon p; |
| 206 |
|
| 207 |
setcolor(irrad, 0, 0, 0); |
| 208 |
|
| 209 |
/* Ignore sources */ |
| 210 |
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) |
| 211 |
return; |
| 212 |
|
| 213 |
if (find1Photon(preCompPmap, r, &p)) |
| 214 |
/* p contains a found photon, so get its irradiance, otherwise it |
| 215 |
* remains zero under the assumption all photons are too distant |
| 216 |
* to contribute significantly */ |
| 217 |
getPhotonFlux(&p, irrad); |
| 218 |
} |
| 219 |
|
| 220 |
|
| 221 |
|
| 222 |
|
| 223 |
void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
| 224 |
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
| 225 |
{ |
| 226 |
unsigned i; |
| 227 |
float r2, gecc2, ph; |
| 228 |
COLOR flux; |
| 229 |
Photon *photon; |
| 230 |
const PhotonSearchQueueNode *sqn; |
| 231 |
|
| 232 |
setcolor(irrad, 0, 0, 0); |
| 233 |
|
| 234 |
if (!pmap -> maxGather) |
| 235 |
return; |
| 236 |
|
| 237 |
findPhotons(pmap, ray); |
| 238 |
|
| 239 |
/* Need at least 2 photons */ |
| 240 |
if (pmap -> squeue.tail < 2) |
| 241 |
return; |
| 242 |
|
| 243 |
#if 0 |
| 244 |
/* Volume biascomp disabled (probably redundant) */ |
| 245 |
if (pmap -> minGather == pmap -> maxGather) |
| 246 |
#endif |
| 247 |
{ |
| 248 |
/* No bias compensation. Just do a plain vanilla estimate */ |
| 249 |
gecc2 = ray -> gecc * ray -> gecc; |
| 250 |
sqn = pmap -> squeue.node + 1; |
| 251 |
|
| 252 |
/* Average radius^2 between furthest two photons to improve accuracy */ |
| 253 |
r2 = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 254 |
r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); |
| 255 |
|
| 256 |
/* Skip the extra photon */ |
| 257 |
for (i = 1; i < pmap -> squeue.tail; i++, sqn++) { |
| 258 |
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); |
| 259 |
|
| 260 |
/* Compute phase function for inscattering from photon */ |
| 261 |
if (gecc2 <= FTINY) |
| 262 |
ph = 1; |
| 263 |
else { |
| 264 |
ph = DOT(ray -> rdir, photon -> norm) / 127; |
| 265 |
ph = 1 + gecc2 - 2 * ray -> gecc * ph; |
| 266 |
ph = (1 - gecc2) / (ph * sqrt(ph)); |
| 267 |
} |
| 268 |
|
| 269 |
getPhotonFlux(photon, flux); |
| 270 |
scalecolor(flux, ph); |
| 271 |
addcolor(irrad, flux); |
| 272 |
} |
| 273 |
|
| 274 |
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
| 275 |
normalization factor 1 / (4 * PI) */ |
| 276 |
scalecolor(irrad, 3 / (16 * PI * PI * r2 * sqrt(r2))); |
| 277 |
return; |
| 278 |
} |
| 279 |
#if 0 |
| 280 |
else |
| 281 |
/* Apply bias compensation to density estimate */ |
| 282 |
volumeBiasComp(pmap, ray, irrad); |
| 283 |
#endif |
| 284 |
} |