| 1 | greg | 2.1 | #ifndef lint | 
| 2 | rschregle | 2.5 | static const char RCSid[] = "$Id: pmutil.c,v 2.4 2020/01/23 18:27:02 rschregle Exp $"; | 
| 3 | greg | 2.1 | #endif | 
| 4 |  |  |  | 
| 5 |  |  | /* | 
| 6 |  |  | ====================================================================== | 
| 7 |  |  | Photon map utilities | 
| 8 |  |  |  | 
| 9 |  |  | Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) | 
| 10 |  |  | (c) Fraunhofer Institute for Solar Energy Systems, | 
| 11 |  |  | (c) Lucerne University of Applied Sciences and Arts, | 
| 12 |  |  | supported by the Swiss National Science Foundation (SNSF, #147053) | 
| 13 |  |  | ====================================================================== | 
| 14 |  |  |  | 
| 15 | rschregle | 2.5 | $Id: pmutil.c,v 2.4 2020/01/23 18:27:02 rschregle Exp $ | 
| 16 | greg | 2.1 | */ | 
| 17 |  |  |  | 
| 18 |  |  | #include "pmap.h" | 
| 19 |  |  | #include "pmapio.h" | 
| 20 |  |  | #include "pmapbias.h" | 
| 21 |  |  | #include "otypes.h" | 
| 22 |  |  | #include <sys/stat.h> | 
| 23 |  |  |  | 
| 24 |  |  |  | 
| 25 |  |  | extern char *octname; | 
| 26 |  |  |  | 
| 27 |  |  |  | 
| 28 |  |  | /* Photon map lookup functions per type */ | 
| 29 |  |  | void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { | 
| 30 |  |  | photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, | 
| 31 | rschregle | 2.2 | photonDensity, photonDensity | 
| 32 | greg | 2.1 | }; | 
| 33 |  |  |  | 
| 34 |  |  |  | 
| 35 |  |  |  | 
| 36 |  |  |  | 
| 37 |  |  | void colorNorm (COLOR c) | 
| 38 |  |  | /* Normalise colour channels to average of 1 */ | 
| 39 |  |  | { | 
| 40 |  |  | const float avg = colorAvg(c); | 
| 41 |  |  |  | 
| 42 |  |  | if (!avg) | 
| 43 |  |  | return; | 
| 44 |  |  |  | 
| 45 |  |  | c [0] /= avg; | 
| 46 |  |  | c [1] /= avg; | 
| 47 |  |  | c [2] /= avg; | 
| 48 |  |  | } | 
| 49 |  |  |  | 
| 50 |  |  |  | 
| 51 |  |  |  | 
| 52 |  |  |  | 
| 53 |  |  | void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) | 
| 54 |  |  | { | 
| 55 |  |  | unsigned t; | 
| 56 |  |  | struct stat octstat, pmstat; | 
| 57 |  |  | PhotonMap *pm; | 
| 58 |  |  | PhotonMapType type; | 
| 59 |  |  |  | 
| 60 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 61 |  |  | if (setPmapParam(&pm, parm + t)) { | 
| 62 |  |  | /* Check if photon map newer than octree */ | 
| 63 |  |  | if (pm -> fileName && octname && | 
| 64 |  |  | !stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && | 
| 65 |  |  | octstat.st_mtime > pmstat.st_mtime) { | 
| 66 |  |  | sprintf(errmsg, "photon map in file %s may be stale", | 
| 67 |  |  | pm -> fileName); | 
| 68 |  |  | error(USER, errmsg); | 
| 69 |  |  | } | 
| 70 |  |  |  | 
| 71 |  |  | /* Load photon map from file and get its type */ | 
| 72 |  |  | if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) | 
| 73 |  |  | error(USER, "failed loading photon map"); | 
| 74 |  |  |  | 
| 75 |  |  | /* Assign to appropriate photon map type (deleting previously | 
| 76 |  |  | * loaded photon map of same type if necessary) */ | 
| 77 |  |  | if (pmaps [type]) { | 
| 78 | rschregle | 2.4 | sprintf(errmsg, "multiple %s photon maps, dropping previous", | 
| 79 |  |  | pmapName [type]); | 
| 80 |  |  | error(WARNING, errmsg); | 
| 81 | greg | 2.1 | deletePhotons(pmaps [type]); | 
| 82 |  |  | free(pmaps [type]); | 
| 83 |  |  | } | 
| 84 |  |  | pmaps [type] = pm; | 
| 85 |  |  |  | 
| 86 | rschregle | 2.4 | /* Check for valid density estimate bandwidths */ | 
| 87 |  |  | if ((pm -> minGather > 1 || pm -> maxGather > 1) && | 
| 88 |  |  | (type == PMAP_TYPE_PRECOMP)) { | 
| 89 |  |  | /* Force bwidth to 1 for precomputed pmap */ | 
| 90 |  |  | error(WARNING, "ignoring bandwidth for precomp photon map"); | 
| 91 |  |  | pm -> minGather = pm -> maxGather = 1; | 
| 92 |  |  | } | 
| 93 |  |  |  | 
| 94 |  |  | if ((pm -> maxGather > pm -> minGather) && | 
| 95 |  |  | (type == PMAP_TYPE_VOLUME)) { | 
| 96 |  |  | /* Biascomp for volume pmaps (see volumePhotonDensity() below) | 
| 97 |  |  | is considered redundant, and there's probably no point in | 
| 98 |  |  | recovering by using the lower bandwidth, since it's probably | 
| 99 |  |  | not what the user wants, so bail out. */ | 
| 100 |  |  | sprintf(errmsg, | 
| 101 |  |  | "bias compensation is not available with %s photon maps", | 
| 102 |  |  | pmapName [type]); | 
| 103 |  |  | error(USER, errmsg); | 
| 104 |  |  | } | 
| 105 |  |  |  | 
| 106 | greg | 2.1 | if (pm -> maxGather > pm -> numPhotons) { | 
| 107 |  |  | error(WARNING, "adjusting density estimate bandwidth"); | 
| 108 |  |  | pm -> minGather = pm -> maxGather = pm -> numPhotons; | 
| 109 | rschregle | 2.4 | } | 
| 110 | greg | 2.1 | } | 
| 111 |  |  | } | 
| 112 |  |  |  | 
| 113 |  |  |  | 
| 114 |  |  |  | 
| 115 |  |  | void cleanUpPmaps (PhotonMap **pmaps) | 
| 116 |  |  | { | 
| 117 |  |  | unsigned t; | 
| 118 |  |  |  | 
| 119 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) { | 
| 120 |  |  | if (pmaps [t]) { | 
| 121 |  |  | deletePhotons(pmaps [t]); | 
| 122 |  |  | free(pmaps [t]); | 
| 123 |  |  | } | 
| 124 |  |  | } | 
| 125 |  |  | } | 
| 126 |  |  |  | 
| 127 |  |  |  | 
| 128 |  |  |  | 
| 129 |  |  |  | 
| 130 |  |  | void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) | 
| 131 |  |  | /* Photon density estimate. Returns irradiance at ray -> rop. */ | 
| 132 |  |  | { | 
| 133 |  |  | unsigned                      i; | 
| 134 | rschregle | 2.3 | float                         r2; | 
| 135 | greg | 2.1 | COLOR                         flux; | 
| 136 |  |  | Photon                        *photon; | 
| 137 |  |  | const PhotonSearchQueueNode   *sqn; | 
| 138 |  |  |  | 
| 139 |  |  | setcolor(irrad, 0, 0, 0); | 
| 140 |  |  |  | 
| 141 |  |  | if (!pmap -> maxGather) | 
| 142 |  |  | return; | 
| 143 |  |  |  | 
| 144 |  |  | /* Ignore sources */ | 
| 145 |  |  | if (ray -> ro && islight(objptr(ray -> ro -> omod) -> otype)) | 
| 146 |  |  | return; | 
| 147 |  |  |  | 
| 148 |  |  | findPhotons(pmap, ray); | 
| 149 |  |  |  | 
| 150 |  |  | /* Need at least 2 photons */ | 
| 151 |  |  | if (pmap -> squeue.tail < 2) { | 
| 152 |  |  | #ifdef PMAP_NONEFOUND | 
| 153 |  |  | sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", | 
| 154 |  |  | ray -> ro ? ray -> ro -> oname : "<null>", | 
| 155 |  |  | ray -> rop [0], ray -> rop [1], ray -> rop [2]); | 
| 156 |  |  | error(WARNING, errmsg); | 
| 157 |  |  | #endif | 
| 158 |  |  |  | 
| 159 |  |  | return; | 
| 160 |  |  | } | 
| 161 |  |  |  | 
| 162 |  |  | if (pmap -> minGather == pmap -> maxGather) { | 
| 163 |  |  | /* No bias compensation. Just do a plain vanilla estimate */ | 
| 164 |  |  | sqn = pmap -> squeue.node + 1; | 
| 165 |  |  |  | 
| 166 | rschregle | 2.3 | /* Average radius^2 between furthest two photons to improve accuracy */ | 
| 167 |  |  | r2 = max(sqn -> dist2, (sqn + 1) -> dist2); | 
| 168 |  |  | r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); | 
| 169 | greg | 2.1 |  | 
| 170 |  |  | /* Skip the extra photon */ | 
| 171 |  |  | for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) { | 
| 172 |  |  | photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); | 
| 173 |  |  | getPhotonFlux(photon, flux); | 
| 174 |  |  | #ifdef PMAP_EPANECHNIKOV | 
| 175 |  |  | /* Apply Epanechnikov kernel to photon flux based on photon dist */ | 
| 176 | rschregle | 2.3 | scalecolor(flux, 2 * (1 - sqn -> dist2 / r2)); | 
| 177 | greg | 2.1 | #endif | 
| 178 |  |  | addcolor(irrad, flux); | 
| 179 |  |  | } | 
| 180 |  |  |  | 
| 181 |  |  | /* Divide by search area PI * r^2, 1 / PI required as ambient | 
| 182 |  |  | normalisation factor */ | 
| 183 | rschregle | 2.3 | scalecolor(irrad, 1 / (PI * PI * r2)); | 
| 184 | greg | 2.1 |  | 
| 185 |  |  | return; | 
| 186 |  |  | } | 
| 187 |  |  | else | 
| 188 |  |  | /* Apply bias compensation to density estimate */ | 
| 189 |  |  | biasComp(pmap, irrad); | 
| 190 |  |  | } | 
| 191 |  |  |  | 
| 192 |  |  |  | 
| 193 |  |  |  | 
| 194 |  |  |  | 
| 195 |  |  | void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) | 
| 196 |  |  | /* Returns precomputed photon density estimate at ray -> rop. */ | 
| 197 |  |  | { | 
| 198 |  |  | Photon p; | 
| 199 |  |  |  | 
| 200 |  |  | setcolor(irrad, 0, 0, 0); | 
| 201 |  |  |  | 
| 202 |  |  | /* Ignore sources */ | 
| 203 |  |  | if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) | 
| 204 |  |  | return; | 
| 205 |  |  |  | 
| 206 | rschregle | 2.5 | if (find1Photon(preCompPmap, r, &p)) | 
| 207 |  |  | /* p contains a found photon, so get its irradiance, otherwise it | 
| 208 |  |  | * remains zero under the assumption all photons are too distant | 
| 209 |  |  | * to contribute significantly */ | 
| 210 |  |  | getPhotonFlux(&p, irrad); | 
| 211 | greg | 2.1 | } | 
| 212 |  |  |  | 
| 213 |  |  |  | 
| 214 |  |  |  | 
| 215 |  |  |  | 
| 216 |  |  | void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) | 
| 217 |  |  | /* Photon volume density estimate. Returns irradiance at ray -> rop. */ | 
| 218 |  |  | { | 
| 219 |  |  | unsigned                      i; | 
| 220 | rschregle | 2.3 | float                         r2, gecc2, ph; | 
| 221 | greg | 2.1 | COLOR                         flux; | 
| 222 |  |  | Photon                        *photon; | 
| 223 |  |  | const PhotonSearchQueueNode   *sqn; | 
| 224 |  |  |  | 
| 225 |  |  | setcolor(irrad, 0, 0, 0); | 
| 226 |  |  |  | 
| 227 |  |  | if (!pmap -> maxGather) | 
| 228 |  |  | return; | 
| 229 |  |  |  | 
| 230 |  |  | findPhotons(pmap, ray); | 
| 231 |  |  |  | 
| 232 |  |  | /* Need at least 2 photons */ | 
| 233 |  |  | if (pmap -> squeue.tail < 2) | 
| 234 |  |  | return; | 
| 235 |  |  |  | 
| 236 |  |  | #if 0 | 
| 237 |  |  | /* Volume biascomp disabled (probably redundant) */ | 
| 238 |  |  | if (pmap -> minGather == pmap -> maxGather) | 
| 239 |  |  | #endif | 
| 240 |  |  | { | 
| 241 |  |  | /* No bias compensation. Just do a plain vanilla estimate */ | 
| 242 |  |  | gecc2 = ray -> gecc * ray -> gecc; | 
| 243 |  |  | sqn = pmap -> squeue.node + 1; | 
| 244 |  |  |  | 
| 245 | rschregle | 2.3 | /* Average radius^2 between furthest two photons to improve accuracy */ | 
| 246 |  |  | r2 = max(sqn -> dist2, (sqn + 1) -> dist2); | 
| 247 |  |  | r2 = 0.25 * (pmap -> maxDist2 + r2 + 2 * sqrt(pmap -> maxDist2 * r2)); | 
| 248 | greg | 2.1 |  | 
| 249 |  |  | /* Skip the extra photon */ | 
| 250 |  |  | for (i = 1; i < pmap -> squeue.tail; i++, sqn++) { | 
| 251 |  |  | photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); | 
| 252 |  |  |  | 
| 253 |  |  | /* Compute phase function for inscattering from photon */ | 
| 254 |  |  | if (gecc2 <= FTINY) | 
| 255 |  |  | ph = 1; | 
| 256 |  |  | else { | 
| 257 |  |  | ph = DOT(ray -> rdir, photon -> norm) / 127; | 
| 258 |  |  | ph = 1 + gecc2 - 2 * ray -> gecc * ph; | 
| 259 |  |  | ph = (1 - gecc2) / (ph * sqrt(ph)); | 
| 260 |  |  | } | 
| 261 |  |  |  | 
| 262 |  |  | getPhotonFlux(photon, flux); | 
| 263 |  |  | scalecolor(flux, ph); | 
| 264 |  |  | addcolor(irrad, flux); | 
| 265 |  |  | } | 
| 266 |  |  |  | 
| 267 |  |  | /* Divide by search volume 4 / 3 * PI * r^3 and phase function | 
| 268 |  |  | normalization factor 1 / (4 * PI) */ | 
| 269 | rschregle | 2.3 | scalecolor(irrad, 3 / (16 * PI * PI * r2 * sqrt(r2))); | 
| 270 | greg | 2.1 | return; | 
| 271 |  |  | } | 
| 272 |  |  | #if 0 | 
| 273 |  |  | else | 
| 274 |  |  | /* Apply bias compensation to density estimate */ | 
| 275 |  |  | volumeBiasComp(pmap, ray, irrad); | 
| 276 |  |  | #endif | 
| 277 |  |  | } |