| 1 |
greg |
2.1 |
/*
|
| 2 |
|
|
==================================================================
|
| 3 |
|
|
Photon map data structures and kd-tree handling
|
| 4 |
|
|
|
| 5 |
|
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com})
|
| 6 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems,
|
| 7 |
rschregle |
2.3 |
(c) Lucerne University of Applied Sciences and Arts,
|
| 8 |
|
|
supported by the Swiss National Science Foundation (SNSF, #147053)
|
| 9 |
greg |
2.1 |
==================================================================
|
| 10 |
|
|
|
| 11 |
greg |
2.6 |
$Id: pmapdata.c,v 2.5 2015/05/20 14:44:12 greg Exp $
|
| 12 |
greg |
2.1 |
*/
|
| 13 |
|
|
|
| 14 |
|
|
|
| 15 |
|
|
|
| 16 |
|
|
#include "pmap.h"
|
| 17 |
|
|
#include "pmaprand.h"
|
| 18 |
|
|
#include "pmapmat.h"
|
| 19 |
|
|
#include "otypes.h"
|
| 20 |
|
|
#include "source.h"
|
| 21 |
|
|
#include "rcontrib.h"
|
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
|
| 25 |
|
|
PhotonMap *photonMaps [NUM_PMAP_TYPES] = {
|
| 26 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL
|
| 27 |
|
|
};
|
| 28 |
|
|
|
| 29 |
|
|
|
| 30 |
|
|
|
| 31 |
|
|
void initPhotonMap (PhotonMap *pmap, PhotonMapType t)
|
| 32 |
|
|
/* Init photon map 'n' stuff... */
|
| 33 |
|
|
{
|
| 34 |
|
|
if (!pmap)
|
| 35 |
|
|
return;
|
| 36 |
|
|
|
| 37 |
|
|
pmap -> heapSize = pmap -> heapEnd = 0;
|
| 38 |
|
|
pmap -> heap = NULL;
|
| 39 |
|
|
pmap -> squeue = NULL;
|
| 40 |
|
|
pmap -> biasCompHist = NULL;
|
| 41 |
|
|
pmap -> maxPos [0] = pmap -> maxPos [1] = pmap -> maxPos [2] = -FHUGE;
|
| 42 |
|
|
pmap -> minPos [0] = pmap -> minPos [1] = pmap -> minPos [2] = FHUGE;
|
| 43 |
|
|
pmap -> minGathered = pmap -> maxGathered = pmap -> totalGathered = 0;
|
| 44 |
|
|
pmap -> gatherTolerance = gatherTolerance;
|
| 45 |
|
|
pmap -> minError = pmap -> maxError = pmap -> rmsError = 0;
|
| 46 |
|
|
pmap -> numDensity = 0;
|
| 47 |
|
|
pmap -> distribRatio = 1;
|
| 48 |
|
|
pmap -> type = t;
|
| 49 |
|
|
|
| 50 |
|
|
/* Init local RNG state */
|
| 51 |
|
|
pmap -> randState [0] = 10243;
|
| 52 |
|
|
pmap -> randState [1] = 39829;
|
| 53 |
|
|
pmap -> randState [2] = 9433;
|
| 54 |
|
|
/* pmapSeed(25999, pmap -> randState); */
|
| 55 |
|
|
pmapSeed(randSeed, pmap -> randState);
|
| 56 |
|
|
|
| 57 |
|
|
/* Set up type-specific photon lookup callback */
|
| 58 |
|
|
pmap -> lookup = pmapLookup [t];
|
| 59 |
|
|
|
| 60 |
|
|
pmap -> primary = NULL;
|
| 61 |
|
|
pmap -> primarySize = pmap -> primaryEnd = 0;
|
| 62 |
|
|
}
|
| 63 |
|
|
|
| 64 |
|
|
|
| 65 |
|
|
|
| 66 |
|
|
const PhotonPrimary* addPhotonPrimary (PhotonMap *pmap, const RAY *ray)
|
| 67 |
|
|
{
|
| 68 |
|
|
PhotonPrimary *prim = NULL;
|
| 69 |
greg |
2.5 |
FVECT dvec;
|
| 70 |
greg |
2.1 |
|
| 71 |
|
|
if (!pmap || !ray)
|
| 72 |
|
|
return NULL;
|
| 73 |
|
|
|
| 74 |
|
|
/* Check if last primary ray has spawned photons (srcIdx >= 0, see
|
| 75 |
|
|
* addPhoton()), in which case we keep it and allocate a new one;
|
| 76 |
|
|
* otherwise we overwrite the unused entry */
|
| 77 |
|
|
if (pmap -> primary && pmap -> primary [pmap -> primaryEnd].srcIdx >= 0)
|
| 78 |
|
|
pmap -> primaryEnd++;
|
| 79 |
|
|
|
| 80 |
|
|
if (!pmap -> primarySize || pmap -> primaryEnd >= pmap -> primarySize) {
|
| 81 |
|
|
/* Allocate/enlarge array */
|
| 82 |
|
|
pmap -> primarySize += pmap -> heapSizeInc;
|
| 83 |
|
|
|
| 84 |
|
|
/* Counter wraparound? */
|
| 85 |
|
|
if (pmap -> primarySize < pmap -> heapSizeInc)
|
| 86 |
|
|
error(INTERNAL, "photon primary overflow");
|
| 87 |
|
|
|
| 88 |
|
|
pmap -> primary = (PhotonPrimary *)realloc(pmap -> primary,
|
| 89 |
|
|
sizeof(PhotonPrimary) *
|
| 90 |
|
|
pmap -> primarySize);
|
| 91 |
|
|
if (!pmap -> primary)
|
| 92 |
|
|
error(USER, "can't allocate photon primaries");
|
| 93 |
|
|
}
|
| 94 |
|
|
|
| 95 |
|
|
prim = pmap -> primary + pmap -> primaryEnd;
|
| 96 |
|
|
|
| 97 |
|
|
/* Mark unused with negative source index until path spawns a photon (see
|
| 98 |
|
|
* addPhoton()) */
|
| 99 |
|
|
prim -> srcIdx = -1;
|
| 100 |
|
|
|
| 101 |
|
|
/* Reverse incident direction to point to light source */
|
| 102 |
greg |
2.5 |
dvec [0] = -ray -> rdir [0];
|
| 103 |
|
|
dvec [1] = -ray -> rdir [1];
|
| 104 |
|
|
dvec [2] = -ray -> rdir [2];
|
| 105 |
|
|
prim -> dir = encodedir(dvec);
|
| 106 |
greg |
2.1 |
|
| 107 |
greg |
2.4 |
VCOPY(prim -> pos, ray -> rop);
|
| 108 |
greg |
2.1 |
|
| 109 |
|
|
return prim;
|
| 110 |
|
|
}
|
| 111 |
|
|
|
| 112 |
|
|
|
| 113 |
|
|
|
| 114 |
|
|
const Photon* addPhoton (PhotonMap* pmap, const RAY* ray)
|
| 115 |
|
|
{
|
| 116 |
|
|
unsigned i;
|
| 117 |
|
|
Photon* photon = NULL;
|
| 118 |
|
|
COLOR photonFlux;
|
| 119 |
|
|
|
| 120 |
|
|
/* Account for distribution ratio */
|
| 121 |
|
|
if (!pmap || pmapRandom(pmap -> randState) > pmap -> distribRatio)
|
| 122 |
|
|
return NULL;
|
| 123 |
|
|
|
| 124 |
|
|
/* Don't store on sources */
|
| 125 |
|
|
if (ray -> robj > -1 && islight(objptr(ray -> ro -> omod) -> otype))
|
| 126 |
|
|
return NULL;
|
| 127 |
|
|
|
| 128 |
|
|
#if 0
|
| 129 |
|
|
if (inContribPmap(pmap)) {
|
| 130 |
|
|
/* Adding contribution photon */
|
| 131 |
|
|
if (ray -> parent && ray -> parent -> rtype & PRIMARY)
|
| 132 |
|
|
/* Add primary photon ray if parent is primary; by putting this
|
| 133 |
|
|
* here and checking the ray's immediate parent, we only add
|
| 134 |
|
|
* primaries that actually contribute photons, and we only add them
|
| 135 |
|
|
* once. */
|
| 136 |
|
|
addPhotonPrimary(pmap, ray -> parent);
|
| 137 |
|
|
|
| 138 |
|
|
/* Save index to primary ray (remains unchanged if primary already in
|
| 139 |
|
|
* array) */
|
| 140 |
|
|
primary = pmap -> primaryEnd;
|
| 141 |
|
|
}
|
| 142 |
|
|
#endif
|
| 143 |
|
|
|
| 144 |
|
|
#ifdef PMAP_ROI
|
| 145 |
|
|
/* Store photon if within region of interest -- for egg-spurtz only! */
|
| 146 |
|
|
if (ray -> rop [0] >= pmapROI [0] && ray -> rop [0] <= pmapROI [1] &&
|
| 147 |
|
|
ray -> rop [1] >= pmapROI [2] && ray -> rop [1] <= pmapROI [3] &&
|
| 148 |
|
|
ray -> rop [2] >= pmapROI [4] && ray -> rop [2] <= pmapROI [5])
|
| 149 |
|
|
#endif
|
| 150 |
|
|
{
|
| 151 |
|
|
if (pmap -> heapEnd >= pmap -> heapSize) {
|
| 152 |
|
|
/* Enlarge heap */
|
| 153 |
|
|
pmap -> heapSize += pmap -> heapSizeInc;
|
| 154 |
|
|
|
| 155 |
|
|
/* Counter wraparound? */
|
| 156 |
|
|
if (pmap -> heapSize < pmap -> heapSizeInc)
|
| 157 |
|
|
error(INTERNAL, "photon heap overflow");
|
| 158 |
|
|
|
| 159 |
|
|
pmap -> heap = (Photon *)realloc(pmap -> heap,
|
| 160 |
|
|
sizeof(Photon) * pmap -> heapSize);
|
| 161 |
|
|
if (!pmap -> heap)
|
| 162 |
|
|
error(USER, "can't allocate photon heap");
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
photon = pmap -> heap + pmap -> heapEnd++;
|
| 166 |
|
|
|
| 167 |
|
|
/* Adjust flux according to distribution ratio and ray weight */
|
| 168 |
|
|
copycolor(photonFlux, ray -> rcol);
|
| 169 |
|
|
scalecolor(photonFlux,
|
| 170 |
|
|
ray -> rweight / (pmap -> distribRatio ? pmap -> distribRatio
|
| 171 |
|
|
: 1));
|
| 172 |
|
|
setPhotonFlux(photon, photonFlux);
|
| 173 |
|
|
|
| 174 |
|
|
/* Set photon position and flags */
|
| 175 |
|
|
VCOPY(photon -> pos, ray -> rop);
|
| 176 |
|
|
photon -> flags = PMAP_CAUSTICRAY(ray) ? PMAP_CAUST_BIT : 0;
|
| 177 |
|
|
|
| 178 |
|
|
/* Set primary ray index and mark as used for contrib photons */
|
| 179 |
|
|
if (isContribPmap(pmap)) {
|
| 180 |
|
|
photon -> primary = pmap -> primaryEnd;
|
| 181 |
|
|
pmap -> primary [pmap -> primaryEnd].srcIdx = ray -> rsrc;
|
| 182 |
|
|
}
|
| 183 |
|
|
else photon -> primary = 0;
|
| 184 |
|
|
|
| 185 |
|
|
/* Update min and max positions & set normal */
|
| 186 |
|
|
for (i = 0; i <= 2; i++) {
|
| 187 |
|
|
if (photon -> pos [i] < pmap -> minPos [i])
|
| 188 |
|
|
pmap -> minPos [i] = photon -> pos [i];
|
| 189 |
|
|
if (photon -> pos [i] > pmap -> maxPos [i])
|
| 190 |
|
|
pmap -> maxPos [i] = photon -> pos [i];
|
| 191 |
|
|
photon -> norm [i] = 127.0 * (isVolumePmap(pmap) ? ray -> rdir [i]
|
| 192 |
|
|
: ray -> ron [i]);
|
| 193 |
|
|
}
|
| 194 |
|
|
}
|
| 195 |
|
|
|
| 196 |
|
|
return photon;
|
| 197 |
|
|
}
|
| 198 |
|
|
|
| 199 |
|
|
|
| 200 |
|
|
|
| 201 |
|
|
static void nearestNeighbours (PhotonMap* pmap, const float pos [3],
|
| 202 |
|
|
const float norm [3], unsigned long node)
|
| 203 |
|
|
/* Recursive part of findPhotons(..).
|
| 204 |
|
|
Note that all heap and priority queue index handling is 1-based, but
|
| 205 |
|
|
accesses to the arrays are 0-based! */
|
| 206 |
|
|
{
|
| 207 |
|
|
Photon* p = &pmap -> heap [node - 1];
|
| 208 |
|
|
unsigned i, j;
|
| 209 |
|
|
/* Signed distance to current photon's splitting plane */
|
| 210 |
|
|
float d = pos [photonDiscr(*p)] - p -> pos [photonDiscr(*p)],
|
| 211 |
|
|
d2 = d * d;
|
| 212 |
|
|
PhotonSQNode* sq = pmap -> squeue;
|
| 213 |
|
|
const unsigned sqSize = pmap -> squeueSize;
|
| 214 |
|
|
float dv [3];
|
| 215 |
|
|
|
| 216 |
|
|
/* Search subtree closer to pos first; exclude other subtree if the
|
| 217 |
|
|
distance to the splitting plane is greater than maxDist */
|
| 218 |
|
|
if (d < 0) {
|
| 219 |
|
|
if (node << 1 <= pmap -> heapSize)
|
| 220 |
|
|
nearestNeighbours(pmap, pos, norm, node << 1);
|
| 221 |
|
|
if (d2 < pmap -> maxDist && node << 1 < pmap -> heapSize)
|
| 222 |
|
|
nearestNeighbours(pmap, pos, norm, (node << 1) + 1);
|
| 223 |
|
|
}
|
| 224 |
|
|
else {
|
| 225 |
|
|
if (node << 1 < pmap -> heapSize)
|
| 226 |
|
|
nearestNeighbours(pmap, pos, norm, (node << 1) + 1);
|
| 227 |
|
|
if (d2 < pmap -> maxDist && node << 1 <= pmap -> heapSize)
|
| 228 |
|
|
nearestNeighbours(pmap, pos, norm, node << 1);
|
| 229 |
|
|
}
|
| 230 |
|
|
|
| 231 |
|
|
/* Reject photon if normal faces away (ignored for volume photons) */
|
| 232 |
|
|
if (norm && DOT(norm, p -> norm) <= 0)
|
| 233 |
|
|
return;
|
| 234 |
|
|
|
| 235 |
|
|
if (isContribPmap(pmap) && pmap -> srcContrib) {
|
| 236 |
|
|
/* Lookup in contribution photon map */
|
| 237 |
|
|
OBJREC *srcMod;
|
| 238 |
|
|
const int srcIdx = photonSrcIdx(pmap, p);
|
| 239 |
|
|
|
| 240 |
|
|
if (srcIdx < 0 || srcIdx >= nsources)
|
| 241 |
|
|
error(INTERNAL, "invalid light source index in photon map");
|
| 242 |
|
|
|
| 243 |
greg |
2.6 |
srcMod = findmaterial(source [srcIdx].so);
|
| 244 |
greg |
2.1 |
|
| 245 |
|
|
/* Reject photon if contributions from light source which emitted it
|
| 246 |
|
|
* are not sought */
|
| 247 |
|
|
if (!lu_find(pmap -> srcContrib, srcMod -> oname) -> data)
|
| 248 |
|
|
return;
|
| 249 |
|
|
|
| 250 |
|
|
/* Reject non-caustic photon if lookup for caustic contribs */
|
| 251 |
|
|
if (pmap -> lookupFlags & PMAP_CAUST_BIT & ~p -> flags)
|
| 252 |
|
|
return;
|
| 253 |
|
|
}
|
| 254 |
|
|
|
| 255 |
|
|
/* Squared distance to current photon */
|
| 256 |
|
|
dv [0] = pos [0] - p -> pos [0];
|
| 257 |
|
|
dv [1] = pos [1] - p -> pos [1];
|
| 258 |
|
|
dv [2] = pos [2] - p -> pos [2];
|
| 259 |
|
|
d2 = DOT(dv, dv);
|
| 260 |
|
|
|
| 261 |
|
|
/* Accept photon if closer than current max dist & add to priority queue */
|
| 262 |
|
|
if (d2 < pmap -> maxDist) {
|
| 263 |
|
|
if (pmap -> squeueEnd < sqSize) {
|
| 264 |
|
|
/* Priority queue not full; append photon and restore heap */
|
| 265 |
|
|
i = ++pmap -> squeueEnd;
|
| 266 |
|
|
|
| 267 |
|
|
while (i > 1 && sq [(i >> 1) - 1].dist <= d2) {
|
| 268 |
|
|
sq [i - 1].photon = sq [(i >> 1) - 1].photon;
|
| 269 |
|
|
sq [i - 1].dist = sq [(i >> 1) - 1].dist;
|
| 270 |
|
|
i >>= 1;
|
| 271 |
|
|
}
|
| 272 |
|
|
|
| 273 |
|
|
sq [--i].photon = p;
|
| 274 |
|
|
sq [i].dist = d2;
|
| 275 |
|
|
/* Update maxDist if we've just filled the queue */
|
| 276 |
|
|
if (pmap -> squeueEnd >= pmap -> squeueSize)
|
| 277 |
|
|
pmap -> maxDist = sq [0].dist;
|
| 278 |
|
|
}
|
| 279 |
|
|
else {
|
| 280 |
|
|
/* Priority queue full; replace maximum, restore heap, and
|
| 281 |
|
|
update maxDist */
|
| 282 |
|
|
i = 1;
|
| 283 |
|
|
|
| 284 |
|
|
while (i <= sqSize >> 1) {
|
| 285 |
|
|
j = i << 1;
|
| 286 |
|
|
if (j < sqSize && sq [j - 1].dist < sq [j].dist)
|
| 287 |
|
|
j++;
|
| 288 |
|
|
if (d2 >= sq [j - 1].dist)
|
| 289 |
|
|
break;
|
| 290 |
|
|
sq [i - 1].photon = sq [j - 1].photon;
|
| 291 |
|
|
sq [i - 1].dist = sq [j - 1].dist;
|
| 292 |
|
|
i = j;
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
sq [--i].photon = p;
|
| 296 |
|
|
sq [i].dist = d2;
|
| 297 |
|
|
pmap -> maxDist = sq [0].dist;
|
| 298 |
|
|
}
|
| 299 |
|
|
}
|
| 300 |
|
|
}
|
| 301 |
|
|
|
| 302 |
|
|
|
| 303 |
|
|
|
| 304 |
|
|
/* Dynamic max photon search radius increase and reduction factors */
|
| 305 |
|
|
#define PMAP_MAXDIST_INC 4
|
| 306 |
|
|
#define PMAP_MAXDIST_DEC 0.9
|
| 307 |
|
|
|
| 308 |
|
|
/* Num successful lookups before reducing in max search radius */
|
| 309 |
|
|
#define PMAP_MAXDIST_CNT 1000
|
| 310 |
|
|
|
| 311 |
|
|
/* Threshold below which we assume increasing max radius won't help */
|
| 312 |
|
|
#define PMAP_SHORT_LOOKUP_THRESH 1
|
| 313 |
|
|
|
| 314 |
|
|
void findPhotons (PhotonMap* pmap, const RAY* ray)
|
| 315 |
|
|
{
|
| 316 |
|
|
float pos [3], norm [3];
|
| 317 |
|
|
int redo = 0;
|
| 318 |
|
|
|
| 319 |
|
|
if (!pmap -> squeue) {
|
| 320 |
|
|
/* Lazy init priority queue */
|
| 321 |
|
|
pmap -> squeueSize = pmap -> maxGather + 1;
|
| 322 |
|
|
pmap -> squeue = (PhotonSQNode*)malloc(pmap -> squeueSize *
|
| 323 |
|
|
sizeof(PhotonSQNode));
|
| 324 |
|
|
if (!pmap -> squeue)
|
| 325 |
|
|
error(USER, "can't allocate photon priority queue");
|
| 326 |
|
|
|
| 327 |
|
|
pmap -> minGathered = pmap -> maxGather;
|
| 328 |
|
|
pmap -> maxGathered = pmap -> minGather;
|
| 329 |
|
|
pmap -> totalGathered = 0;
|
| 330 |
|
|
pmap -> numLookups = pmap -> numShortLookups = 0;
|
| 331 |
|
|
pmap -> shortLookupPct = 0;
|
| 332 |
|
|
pmap -> minError = FHUGE;
|
| 333 |
|
|
pmap -> maxError = -FHUGE;
|
| 334 |
|
|
pmap -> rmsError = 0;
|
| 335 |
rschregle |
2.3 |
#ifdef PMAP_MAXDIST_ABS
|
| 336 |
|
|
/* Treat maxDistCoeff as an *absolute* and *fixed* max search radius.
|
| 337 |
|
|
Primarily intended for debugging; FOR ZE ECKSPURTZ ONLY! */
|
| 338 |
|
|
pmap -> maxDist0 = pmap -> maxDistLimit = maxDistCoeff;
|
| 339 |
|
|
#else
|
| 340 |
greg |
2.1 |
/* Maximum search radius limit based on avg photon distance to
|
| 341 |
|
|
* centre of gravity */
|
| 342 |
|
|
pmap -> maxDist0 = pmap -> maxDistLimit =
|
| 343 |
|
|
maxDistCoeff * pmap -> squeueSize * pmap -> CoGdist /
|
| 344 |
|
|
pmap -> heapSize;
|
| 345 |
rschregle |
2.3 |
#endif
|
| 346 |
greg |
2.1 |
}
|
| 347 |
|
|
|
| 348 |
|
|
do {
|
| 349 |
|
|
pmap -> squeueEnd = 0;
|
| 350 |
|
|
pmap -> maxDist = pmap -> maxDist0;
|
| 351 |
|
|
|
| 352 |
|
|
/* Search position is ray -> rorg for volume photons, since we have no
|
| 353 |
|
|
intersection point. Normals are ignored -- these are incident
|
| 354 |
|
|
directions). */
|
| 355 |
|
|
if (isVolumePmap(pmap)) {
|
| 356 |
|
|
VCOPY(pos, ray -> rorg);
|
| 357 |
|
|
nearestNeighbours(pmap, pos, NULL, 1);
|
| 358 |
|
|
}
|
| 359 |
|
|
else {
|
| 360 |
|
|
VCOPY(pos, ray -> rop);
|
| 361 |
|
|
VCOPY(norm, ray -> ron);
|
| 362 |
|
|
nearestNeighbours(pmap, pos, norm, 1);
|
| 363 |
|
|
}
|
| 364 |
rschregle |
2.3 |
|
| 365 |
|
|
#ifndef PMAP_MAXDIST_ABS
|
| 366 |
greg |
2.1 |
if (pmap -> squeueEnd < pmap -> squeueSize * pmap -> gatherTolerance) {
|
| 367 |
|
|
/* Short lookup; too few photons found */
|
| 368 |
|
|
if (pmap -> squeueEnd > PMAP_SHORT_LOOKUP_THRESH) {
|
| 369 |
|
|
/* Ignore short lookups which return fewer than
|
| 370 |
|
|
* PMAP_SHORT_LOOKUP_THRESH photons under the assumption there
|
| 371 |
|
|
* really are no photons in the vicinity, and increasing the max
|
| 372 |
|
|
* search radius therefore won't help */
|
| 373 |
rschregle |
2.3 |
#ifdef PMAP_LOOKUP_WARN
|
| 374 |
greg |
2.1 |
sprintf(errmsg,
|
| 375 |
|
|
"%d/%d %s photons found at (%.2f,%.2f,%.2f) on %s",
|
| 376 |
|
|
pmap -> squeueEnd, pmap -> squeueSize,
|
| 377 |
|
|
pmapName [pmap -> type], pos [0], pos [1], pos [2],
|
| 378 |
|
|
ray -> ro ? ray -> ro -> oname : "<null>");
|
| 379 |
|
|
error(WARNING, errmsg);
|
| 380 |
rschregle |
2.3 |
#endif
|
| 381 |
|
|
|
| 382 |
greg |
2.1 |
if (pmap -> maxDist0 < pmap -> maxDistLimit) {
|
| 383 |
|
|
/* Increase max search radius if below limit & redo search */
|
| 384 |
|
|
pmap -> maxDist0 *= PMAP_MAXDIST_INC;
|
| 385 |
rschregle |
2.3 |
#ifdef PMAP_LOOKUP_REDO
|
| 386 |
greg |
2.1 |
redo = 1;
|
| 387 |
rschregle |
2.3 |
#endif
|
| 388 |
greg |
2.1 |
|
| 389 |
rschregle |
2.3 |
#ifdef PMAP_LOOKUP_WARN
|
| 390 |
greg |
2.1 |
sprintf(errmsg,
|
| 391 |
|
|
redo ? "restarting photon lookup with max radius %.1e"
|
| 392 |
|
|
: "max photon lookup radius adjusted to %.1e",
|
| 393 |
|
|
pmap -> maxDist0);
|
| 394 |
|
|
error(WARNING, errmsg);
|
| 395 |
rschregle |
2.3 |
#endif
|
| 396 |
greg |
2.1 |
}
|
| 397 |
rschregle |
2.3 |
#ifdef PMAP_LOOKUP_REDO
|
| 398 |
greg |
2.1 |
else {
|
| 399 |
|
|
sprintf(errmsg, "max photon lookup radius clamped to %.1e",
|
| 400 |
|
|
pmap -> maxDist0);
|
| 401 |
|
|
error(WARNING, errmsg);
|
| 402 |
|
|
}
|
| 403 |
rschregle |
2.3 |
#endif
|
| 404 |
greg |
2.1 |
}
|
| 405 |
|
|
|
| 406 |
|
|
/* Reset successful lookup counter */
|
| 407 |
|
|
pmap -> numLookups = 0;
|
| 408 |
rschregle |
2.3 |
}
|
| 409 |
greg |
2.1 |
else {
|
| 410 |
|
|
/* Increment successful lookup counter and reduce max search radius if
|
| 411 |
|
|
* wraparound */
|
| 412 |
|
|
pmap -> numLookups = (pmap -> numLookups + 1) % PMAP_MAXDIST_CNT;
|
| 413 |
|
|
if (!pmap -> numLookups)
|
| 414 |
|
|
pmap -> maxDist0 *= PMAP_MAXDIST_DEC;
|
| 415 |
|
|
|
| 416 |
|
|
redo = 0;
|
| 417 |
|
|
}
|
| 418 |
rschregle |
2.3 |
#endif
|
| 419 |
greg |
2.1 |
} while (redo);
|
| 420 |
|
|
}
|
| 421 |
|
|
|
| 422 |
|
|
|
| 423 |
|
|
|
| 424 |
|
|
static void nearest1Neighbour (PhotonMap *pmap, const float pos [3],
|
| 425 |
|
|
const float norm [3], Photon **photon,
|
| 426 |
|
|
unsigned long node)
|
| 427 |
|
|
/* Recursive part of find1Photon(..).
|
| 428 |
|
|
Note that all heap index handling is 1-based, but accesses to the
|
| 429 |
|
|
arrays are 0-based! */
|
| 430 |
|
|
{
|
| 431 |
|
|
Photon *p = pmap -> heap + node - 1;
|
| 432 |
|
|
/* Signed distance to current photon's splitting plane */
|
| 433 |
|
|
float d = pos [photonDiscr(*p)] - p -> pos [photonDiscr(*p)],
|
| 434 |
|
|
d2 = d * d;
|
| 435 |
|
|
float dv [3];
|
| 436 |
|
|
|
| 437 |
|
|
/* Search subtree closer to pos first; exclude other subtree if the
|
| 438 |
|
|
distance to the splitting plane is greater than maxDist */
|
| 439 |
|
|
if (d < 0) {
|
| 440 |
|
|
if (node << 1 <= pmap -> heapSize)
|
| 441 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, node << 1);
|
| 442 |
|
|
if (d2 < pmap -> maxDist && node << 1 < pmap -> heapSize)
|
| 443 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, (node << 1) + 1);
|
| 444 |
|
|
}
|
| 445 |
|
|
else {
|
| 446 |
|
|
if (node << 1 < pmap -> heapSize)
|
| 447 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, (node << 1) + 1);
|
| 448 |
|
|
if (d2 < pmap -> maxDist && node << 1 <= pmap -> heapSize)
|
| 449 |
|
|
nearest1Neighbour(pmap, pos, norm, photon, node << 1);
|
| 450 |
|
|
}
|
| 451 |
|
|
|
| 452 |
|
|
/* Squared distance to current photon */
|
| 453 |
|
|
dv [0] = pos [0] - p -> pos [0];
|
| 454 |
|
|
dv [1] = pos [1] - p -> pos [1];
|
| 455 |
|
|
dv [2] = pos [2] - p -> pos [2];
|
| 456 |
|
|
d2 = DOT(dv, dv);
|
| 457 |
|
|
|
| 458 |
|
|
if (d2 < pmap -> maxDist && DOT(norm, p -> norm) > 0) {
|
| 459 |
|
|
/* Closest photon so far with similar normal */
|
| 460 |
|
|
pmap -> maxDist = d2;
|
| 461 |
|
|
*photon = p;
|
| 462 |
|
|
}
|
| 463 |
|
|
}
|
| 464 |
|
|
|
| 465 |
|
|
|
| 466 |
|
|
|
| 467 |
|
|
Photon* find1Photon (PhotonMap *pmap, const RAY* ray)
|
| 468 |
|
|
{
|
| 469 |
|
|
float fpos [3], norm [3];
|
| 470 |
|
|
Photon* photon = NULL;
|
| 471 |
|
|
|
| 472 |
|
|
VCOPY(fpos, ray -> rop);
|
| 473 |
|
|
VCOPY(norm, ray -> ron);
|
| 474 |
|
|
pmap -> maxDist = thescene.cusize;
|
| 475 |
|
|
nearest1Neighbour(pmap, fpos, norm, &photon, 1);
|
| 476 |
|
|
|
| 477 |
|
|
return photon;
|
| 478 |
|
|
}
|
| 479 |
|
|
|
| 480 |
|
|
|
| 481 |
|
|
|
| 482 |
|
|
static unsigned long medianPartition (const Photon* heap,
|
| 483 |
|
|
unsigned long* heapIdx,
|
| 484 |
|
|
unsigned long* heapXdi,
|
| 485 |
|
|
unsigned long left,
|
| 486 |
|
|
unsigned long right, unsigned dim)
|
| 487 |
|
|
/* Returns index to median in heap from indices left to right
|
| 488 |
|
|
(inclusive) in dimension dim. The heap is partitioned relative to
|
| 489 |
|
|
median using a quicksort algorithm. The heap indices in heapIdx are
|
| 490 |
|
|
sorted rather than the heap itself. */
|
| 491 |
|
|
{
|
| 492 |
|
|
register const float* p;
|
| 493 |
|
|
const unsigned long n = right - left + 1;
|
| 494 |
|
|
register unsigned long l, r, lg2, n2, m;
|
| 495 |
|
|
register unsigned d;
|
| 496 |
|
|
|
| 497 |
|
|
/* Round down n to nearest power of 2 */
|
| 498 |
|
|
for (lg2 = 0, n2 = n; n2 > 1; n2 >>= 1, ++lg2);
|
| 499 |
|
|
n2 = 1 << lg2;
|
| 500 |
|
|
|
| 501 |
|
|
/* Determine median position; this takes into account the fact that
|
| 502 |
|
|
only the last level in the heap can be partially empty, and that
|
| 503 |
|
|
it fills from left to right */
|
| 504 |
|
|
m = left + ((n - n2) > (n2 >> 1) - 1 ? n2 - 1 : n - (n2 >> 1));
|
| 505 |
|
|
|
| 506 |
|
|
while (right > left) {
|
| 507 |
|
|
/* Pivot node */
|
| 508 |
|
|
p = heap [heapIdx [right]].pos;
|
| 509 |
|
|
l = left;
|
| 510 |
|
|
r = right - 1;
|
| 511 |
|
|
|
| 512 |
|
|
/* l & r converge, swapping elements out of order with respect to
|
| 513 |
|
|
pivot node. Identical keys are resolved by cycling through
|
| 514 |
|
|
dim. The convergence point is then the pivot's position. */
|
| 515 |
|
|
do {
|
| 516 |
|
|
while (l <= r) {
|
| 517 |
|
|
d = dim;
|
| 518 |
|
|
|
| 519 |
|
|
while (heap [heapIdx [l]].pos [d] == p [d]) {
|
| 520 |
|
|
d = (d + 1) % 3;
|
| 521 |
|
|
|
| 522 |
|
|
if (d == dim) {
|
| 523 |
|
|
/* Ignore dupes? */
|
| 524 |
|
|
error(WARNING, "duplicate keys in photon heap");
|
| 525 |
|
|
l++;
|
| 526 |
|
|
break;
|
| 527 |
|
|
}
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
if (heap [heapIdx [l]].pos [d] < p [d])
|
| 531 |
|
|
l++;
|
| 532 |
|
|
else break;
|
| 533 |
|
|
}
|
| 534 |
|
|
|
| 535 |
|
|
while (r > l) {
|
| 536 |
|
|
d = dim;
|
| 537 |
|
|
|
| 538 |
|
|
while (heap [heapIdx [r]].pos [d] == p [d]) {
|
| 539 |
|
|
d = (d + 1) % 3;
|
| 540 |
|
|
|
| 541 |
|
|
if (d == dim) {
|
| 542 |
|
|
/* Ignore dupes? */
|
| 543 |
|
|
error(WARNING, "duplicate keys in photon heap");
|
| 544 |
|
|
r--;
|
| 545 |
|
|
break;
|
| 546 |
|
|
}
|
| 547 |
|
|
}
|
| 548 |
|
|
|
| 549 |
|
|
if (heap [heapIdx [r]].pos [d] > p [d])
|
| 550 |
|
|
r--;
|
| 551 |
|
|
else break;
|
| 552 |
|
|
}
|
| 553 |
|
|
|
| 554 |
|
|
/* Swap indices (not the nodes they point to) */
|
| 555 |
|
|
n2 = heapIdx [l];
|
| 556 |
|
|
heapIdx [l] = heapIdx [r];
|
| 557 |
|
|
heapIdx [r] = n2;
|
| 558 |
|
|
/* Update reverse indices */
|
| 559 |
|
|
heapXdi [heapIdx [l]] = l;
|
| 560 |
|
|
heapXdi [n2] = r;
|
| 561 |
|
|
} while (l < r);
|
| 562 |
|
|
|
| 563 |
|
|
/* Swap indices of convergence and pivot nodes */
|
| 564 |
|
|
heapIdx [r] = heapIdx [l];
|
| 565 |
|
|
heapIdx [l] = heapIdx [right];
|
| 566 |
|
|
heapIdx [right] = n2;
|
| 567 |
|
|
/* Update reverse indices */
|
| 568 |
|
|
heapXdi [heapIdx [r]] = r;
|
| 569 |
|
|
heapXdi [heapIdx [l]] = l;
|
| 570 |
|
|
heapXdi [n2] = right;
|
| 571 |
|
|
if (l >= m) right = l - 1;
|
| 572 |
|
|
if (l <= m) left = l + 1;
|
| 573 |
|
|
}
|
| 574 |
|
|
|
| 575 |
|
|
/* Once left & right have converged at m, we have found the median */
|
| 576 |
|
|
return m;
|
| 577 |
|
|
}
|
| 578 |
|
|
|
| 579 |
|
|
|
| 580 |
|
|
|
| 581 |
|
|
void buildHeap (Photon* heap, unsigned long* heapIdx,
|
| 582 |
|
|
unsigned long* heapXdi, const float min [3],
|
| 583 |
|
|
const float max [3], unsigned long left,
|
| 584 |
|
|
unsigned long right, unsigned long root)
|
| 585 |
|
|
/* Recursive part of balancePhotons(..). Builds heap from subarray
|
| 586 |
|
|
defined by indices left and right. min and max are the minimum resp.
|
| 587 |
|
|
maximum photon positions in the array. root is the index of the
|
| 588 |
|
|
current subtree's root, which corresponds to the median's 1-based
|
| 589 |
|
|
index in the heap. heapIdx are the balanced heap indices. The heap
|
| 590 |
|
|
is accessed indirectly through these. heapXdi are the reverse indices
|
| 591 |
|
|
from the heap to heapIdx so that heapXdi [heapIdx [i]] = i. */
|
| 592 |
|
|
{
|
| 593 |
|
|
float maxLeft [3], minRight [3];
|
| 594 |
|
|
Photon rootNode;
|
| 595 |
|
|
unsigned d;
|
| 596 |
|
|
|
| 597 |
|
|
/* Choose median for dimension with largest spread and partition
|
| 598 |
|
|
accordingly */
|
| 599 |
|
|
const float d0 = max [0] - min [0],
|
| 600 |
|
|
d1 = max [1] - min [1],
|
| 601 |
|
|
d2 = max [2] - min [2];
|
| 602 |
|
|
const unsigned char dim = d0 > d1 ? d0 > d2 ? 0 : 2
|
| 603 |
|
|
: d1 > d2 ? 1 : 2;
|
| 604 |
|
|
const unsigned long median =
|
| 605 |
|
|
left == right ? left
|
| 606 |
|
|
: medianPartition(heap, heapIdx, heapXdi, left, right, dim);
|
| 607 |
|
|
|
| 608 |
|
|
/* Place median at root of current subtree. This consists of swapping
|
| 609 |
|
|
the median and the root nodes and updating the heap indices */
|
| 610 |
|
|
memcpy(&rootNode, heap + heapIdx [median], sizeof(Photon));
|
| 611 |
|
|
memcpy(heap + heapIdx [median], heap + root - 1, sizeof(Photon));
|
| 612 |
|
|
setPhotonDiscr(rootNode, dim);
|
| 613 |
|
|
memcpy(heap + root - 1, &rootNode, sizeof(Photon));
|
| 614 |
|
|
heapIdx [heapXdi [root - 1]] = heapIdx [median];
|
| 615 |
|
|
heapXdi [heapIdx [median]] = heapXdi [root - 1];
|
| 616 |
|
|
heapIdx [median] = root - 1;
|
| 617 |
|
|
heapXdi [root - 1] = median;
|
| 618 |
|
|
|
| 619 |
|
|
/* Update bounds for left and right subtrees and recurse on them */
|
| 620 |
|
|
for (d = 0; d <= 2; d++)
|
| 621 |
|
|
if (d == dim)
|
| 622 |
|
|
maxLeft [d] = minRight [d] = rootNode.pos [d];
|
| 623 |
|
|
else {
|
| 624 |
|
|
maxLeft [d] = max [d];
|
| 625 |
|
|
minRight [d] = min [d];
|
| 626 |
|
|
}
|
| 627 |
|
|
|
| 628 |
|
|
if (left < median)
|
| 629 |
|
|
buildHeap(heap, heapIdx, heapXdi, min, maxLeft,
|
| 630 |
|
|
left, median - 1, root << 1);
|
| 631 |
|
|
|
| 632 |
|
|
if (right > median)
|
| 633 |
|
|
buildHeap(heap, heapIdx, heapXdi, minRight, max,
|
| 634 |
|
|
median + 1, right, (root << 1) + 1);
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
|
| 638 |
|
|
|
| 639 |
|
|
void balancePhotons (PhotonMap* pmap, double *photonFlux)
|
| 640 |
|
|
{
|
| 641 |
|
|
Photon *heap = pmap -> heap;
|
| 642 |
|
|
unsigned long i;
|
| 643 |
|
|
unsigned long *heapIdx; /* Photon index array */
|
| 644 |
|
|
unsigned long *heapXdi; /* Reverse index to heapIdx */
|
| 645 |
|
|
unsigned j;
|
| 646 |
|
|
COLOR flux;
|
| 647 |
|
|
/* Need doubles here to reduce errors from increment */
|
| 648 |
|
|
double avgFlux [3] = {0, 0, 0}, CoG [3] = {0, 0, 0}, CoGdist = 0;
|
| 649 |
|
|
FVECT d;
|
| 650 |
|
|
|
| 651 |
|
|
if (pmap -> heapEnd) {
|
| 652 |
|
|
pmap -> heapSize = pmap -> heapEnd;
|
| 653 |
|
|
heapIdx = (unsigned long*)malloc(pmap -> heapSize *
|
| 654 |
|
|
sizeof(unsigned long));
|
| 655 |
|
|
heapXdi = (unsigned long*)malloc(pmap -> heapSize *
|
| 656 |
|
|
sizeof(unsigned long));
|
| 657 |
|
|
if (!heapIdx || !heapXdi)
|
| 658 |
|
|
error(USER, "can't allocate heap index");
|
| 659 |
|
|
|
| 660 |
|
|
for (i = 0; i < pmap -> heapSize; i++) {
|
| 661 |
|
|
/* Initialize index arrays */
|
| 662 |
|
|
heapXdi [i] = heapIdx [i] = i;
|
| 663 |
|
|
getPhotonFlux(heap + i, flux);
|
| 664 |
|
|
|
| 665 |
|
|
/* Scale photon's flux (hitherto normalised to 1 over RGB); in case
|
| 666 |
|
|
* of a contrib photon map, this is done per light source, and
|
| 667 |
|
|
* photonFlux is assumed to be an array */
|
| 668 |
|
|
if (photonFlux) {
|
| 669 |
|
|
scalecolor(flux, photonFlux [isContribPmap(pmap) ?
|
| 670 |
|
|
photonSrcIdx(pmap, heap + i) : 0]);
|
| 671 |
|
|
setPhotonFlux(heap + i, flux);
|
| 672 |
|
|
}
|
| 673 |
|
|
|
| 674 |
|
|
/* Need a double here */
|
| 675 |
|
|
addcolor(avgFlux, flux);
|
| 676 |
|
|
|
| 677 |
|
|
/* Add photon position to centre of gravity */
|
| 678 |
|
|
for (j = 0; j < 3; j++)
|
| 679 |
|
|
CoG [j] += heap [i].pos [j];
|
| 680 |
|
|
}
|
| 681 |
|
|
|
| 682 |
|
|
/* Average photon positions to get centre of gravity */
|
| 683 |
|
|
for (j = 0; j < 3; j++)
|
| 684 |
|
|
pmap -> CoG [j] = CoG [j] /= pmap -> heapSize;
|
| 685 |
|
|
|
| 686 |
|
|
/* Compute average photon distance to CoG */
|
| 687 |
|
|
for (i = 0; i < pmap -> heapSize; i++) {
|
| 688 |
|
|
VSUB(d, heap [i].pos, CoG);
|
| 689 |
|
|
CoGdist += DOT(d, d);
|
| 690 |
|
|
}
|
| 691 |
|
|
|
| 692 |
|
|
pmap -> CoGdist = CoGdist /= pmap -> heapSize;
|
| 693 |
|
|
|
| 694 |
|
|
/* Average photon flux based on RGBE representation */
|
| 695 |
|
|
scalecolor(avgFlux, 1.0 / pmap -> heapSize);
|
| 696 |
|
|
copycolor(pmap -> photonFlux, avgFlux);
|
| 697 |
|
|
|
| 698 |
|
|
/* Build kd-tree */
|
| 699 |
|
|
buildHeap(pmap -> heap, heapIdx, heapXdi, pmap -> minPos,
|
| 700 |
|
|
pmap -> maxPos, 0, pmap -> heapSize - 1, 1);
|
| 701 |
|
|
|
| 702 |
|
|
free(heapIdx);
|
| 703 |
|
|
free(heapXdi);
|
| 704 |
|
|
}
|
| 705 |
|
|
}
|
| 706 |
|
|
|
| 707 |
|
|
|
| 708 |
|
|
|
| 709 |
|
|
void deletePhotons (PhotonMap* pmap)
|
| 710 |
|
|
{
|
| 711 |
|
|
free(pmap -> heap);
|
| 712 |
|
|
free(pmap -> squeue);
|
| 713 |
|
|
free(pmap -> biasCompHist);
|
| 714 |
|
|
|
| 715 |
|
|
pmap -> heapSize = 0;
|
| 716 |
|
|
pmap -> minGather = pmap -> maxGather =
|
| 717 |
|
|
pmap -> squeueSize = pmap -> squeueEnd = 0;
|
| 718 |
|
|
}
|