| 1 | greg | 2.9 | #ifndef lint | 
| 2 |  |  | static const char RCSid[] = "$Id$"; | 
| 3 |  |  | #endif | 
| 4 | greg | 2.1 | /* | 
| 5 |  |  | ================================================================== | 
| 6 |  |  | Photon map main module | 
| 7 |  |  |  | 
| 8 |  |  | Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) | 
| 9 |  |  | (c) Fraunhofer Institute for Solar Energy Systems, | 
| 10 | rschregle | 2.4 | (c) Lucerne University of Applied Sciences and Arts, | 
| 11 |  |  | supported by the Swiss National Science Foundation (SNSF, #147053) | 
| 12 | greg | 2.1 | ================================================================== | 
| 13 |  |  |  | 
| 14 | greg | 2.9 | $Id: pmap.c,v 2.8 2015/05/26 12:07:31 rschregle Exp $ | 
| 15 | greg | 2.1 | */ | 
| 16 |  |  |  | 
| 17 |  |  |  | 
| 18 |  |  |  | 
| 19 |  |  | #include "pmap.h" | 
| 20 |  |  | #include "pmapmat.h" | 
| 21 |  |  | #include "pmapsrc.h" | 
| 22 |  |  | #include "pmaprand.h" | 
| 23 |  |  | #include "pmapio.h" | 
| 24 |  |  | #include "pmapbias.h" | 
| 25 |  |  | #include "pmapdiag.h" | 
| 26 |  |  | #include "otypes.h" | 
| 27 |  |  | #include <time.h> | 
| 28 |  |  | #include <sys/stat.h> | 
| 29 |  |  |  | 
| 30 |  |  |  | 
| 31 |  |  |  | 
| 32 |  |  | extern char *octname; | 
| 33 |  |  |  | 
| 34 | greg | 2.9 | static char PmapRevision [] = "$Revision: 2.8 $"; | 
| 35 | greg | 2.1 |  | 
| 36 |  |  |  | 
| 37 |  |  |  | 
| 38 |  |  | /* Photon map lookup functions per type */ | 
| 39 |  |  | void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { | 
| 40 |  |  | photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, | 
| 41 |  |  | photonDensity, NULL | 
| 42 |  |  | }; | 
| 43 |  |  |  | 
| 44 |  |  |  | 
| 45 |  |  |  | 
| 46 |  |  | void colorNorm (COLOR c) | 
| 47 |  |  | /* Normalise colour channels to average of 1 */ | 
| 48 |  |  | { | 
| 49 |  |  | const float avg = colorAvg(c); | 
| 50 |  |  |  | 
| 51 |  |  | if (!avg) | 
| 52 |  |  | return; | 
| 53 |  |  |  | 
| 54 |  |  | c [0] /= avg; | 
| 55 |  |  | c [1] /= avg; | 
| 56 |  |  | c [2] /= avg; | 
| 57 |  |  | } | 
| 58 |  |  |  | 
| 59 |  |  |  | 
| 60 |  |  |  | 
| 61 |  |  | void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) | 
| 62 |  |  | { | 
| 63 |  |  | unsigned t; | 
| 64 |  |  | struct stat octstat, pmstat; | 
| 65 |  |  | PhotonMap *pm; | 
| 66 |  |  | PhotonMapType type; | 
| 67 |  |  |  | 
| 68 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 69 |  |  | if (setPmapParam(&pm, parm + t)) { | 
| 70 |  |  | /* Check if photon map newer than octree */ | 
| 71 | rschregle | 2.4 | if (pm -> fileName && octname && | 
| 72 |  |  | !stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && | 
| 73 | greg | 2.1 | octstat.st_mtime > pmstat.st_mtime) { | 
| 74 |  |  | sprintf(errmsg, "photon map in file %s may be stale", | 
| 75 |  |  | pm -> fileName); | 
| 76 |  |  | error(USER, errmsg); | 
| 77 |  |  | } | 
| 78 |  |  |  | 
| 79 |  |  | /* Load photon map from file and get its type */ | 
| 80 |  |  | if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) | 
| 81 |  |  | error(USER, "failed loading photon map"); | 
| 82 |  |  |  | 
| 83 |  |  | /* Assign to appropriate photon map type (deleting previously | 
| 84 |  |  | * loaded photon map of same type if necessary) */ | 
| 85 |  |  | if (pmaps [type]) { | 
| 86 |  |  | deletePhotons(pmaps [type]); | 
| 87 |  |  | free(pmaps [type]); | 
| 88 |  |  | } | 
| 89 |  |  | pmaps [type] = pm; | 
| 90 |  |  |  | 
| 91 |  |  | /* Check for invalid density estimate bandwidth */ | 
| 92 |  |  | if (pm -> maxGather > pm -> heapSize) { | 
| 93 |  |  | error(WARNING, "adjusting density estimate bandwidth"); | 
| 94 |  |  | pm -> minGather = pm -> maxGather = pm -> heapSize; | 
| 95 |  |  | } | 
| 96 |  |  | } | 
| 97 |  |  | } | 
| 98 |  |  |  | 
| 99 |  |  |  | 
| 100 |  |  |  | 
| 101 |  |  | void savePmaps (const PhotonMap **pmaps, int argc, char **argv) | 
| 102 |  |  | { | 
| 103 |  |  | unsigned t; | 
| 104 |  |  |  | 
| 105 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) { | 
| 106 |  |  | if (pmaps [t]) | 
| 107 | greg | 2.7 | savePhotonMap(pmaps [t], pmaps [t] -> fileName, argc, argv); | 
| 108 | greg | 2.1 | } | 
| 109 |  |  | } | 
| 110 |  |  |  | 
| 111 |  |  |  | 
| 112 |  |  |  | 
| 113 |  |  | void cleanUpPmaps (PhotonMap **pmaps) | 
| 114 |  |  | { | 
| 115 |  |  | unsigned t; | 
| 116 |  |  |  | 
| 117 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) { | 
| 118 |  |  | if (pmaps [t]) { | 
| 119 |  |  | deletePhotons(pmaps [t]); | 
| 120 |  |  | free(pmaps [t]); | 
| 121 |  |  | } | 
| 122 |  |  | } | 
| 123 |  |  | } | 
| 124 |  |  |  | 
| 125 |  |  |  | 
| 126 |  |  |  | 
| 127 |  |  | static int photonParticipate (RAY *ray) | 
| 128 |  |  | /* Trace photon through participating medium. Returns 1 if passed through, | 
| 129 |  |  | or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */ | 
| 130 |  |  | { | 
| 131 |  |  | int i; | 
| 132 |  |  | RREAL cosTheta, cosPhi, du, dv; | 
| 133 |  |  | const float cext = colorAvg(ray -> cext), | 
| 134 |  |  | albedo = colorAvg(ray -> albedo); | 
| 135 |  |  | FVECT u, v; | 
| 136 |  |  | COLOR cvext; | 
| 137 |  |  |  | 
| 138 |  |  | /* Mean free distance until interaction with medium */ | 
| 139 |  |  | ray -> rmax = -log(pmapRandom(mediumState)) / cext; | 
| 140 |  |  |  | 
| 141 |  |  | while (!localhit(ray, &thescene)) { | 
| 142 |  |  | setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), | 
| 143 |  |  | exp(-ray -> rmax * ray -> cext [1]), | 
| 144 |  |  | exp(-ray -> rmax * ray -> cext [2])); | 
| 145 |  |  |  | 
| 146 |  |  | /* Modify ray color and normalise */ | 
| 147 |  |  | multcolor(ray -> rcol, cvext); | 
| 148 |  |  | colorNorm(ray -> rcol); | 
| 149 |  |  | VCOPY(ray -> rorg, ray -> rop); | 
| 150 |  |  |  | 
| 151 |  |  | if (albedo > FTINY) | 
| 152 |  |  | /* Add to volume photon map */ | 
| 153 |  |  | if (ray -> rlvl > 0) addPhoton(volumePmap, ray); | 
| 154 |  |  |  | 
| 155 |  |  | /* Absorbed? */ | 
| 156 |  |  | if (pmapRandom(rouletteState) > albedo) return 0; | 
| 157 |  |  |  | 
| 158 |  |  | /* Colour bleeding without attenuation (?) */ | 
| 159 |  |  | multcolor(ray -> rcol, ray -> albedo); | 
| 160 |  |  | scalecolor(ray -> rcol, 1 / albedo); | 
| 161 |  |  |  | 
| 162 |  |  | /* Scatter photon */ | 
| 163 |  |  | cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1 | 
| 164 |  |  | : 1 / (2 * ray -> gecc) * | 
| 165 |  |  | (1 + ray -> gecc * ray -> gecc - | 
| 166 |  |  | (1 - ray -> gecc * ray -> gecc) / | 
| 167 |  |  | (1 - ray -> gecc + 2 * ray -> gecc * | 
| 168 |  |  | pmapRandom(scatterState))); | 
| 169 |  |  |  | 
| 170 |  |  | cosPhi = cos(2 * PI * pmapRandom(scatterState)); | 
| 171 |  |  | du = dv = sqrt(1 - cosTheta * cosTheta);   /* sin(theta) */ | 
| 172 |  |  | du *= cosPhi; | 
| 173 |  |  | dv *= sqrt(1 - cosPhi * cosPhi);           /* sin(phi) */ | 
| 174 |  |  |  | 
| 175 |  |  | /* Get axes u & v perpendicular to photon direction */ | 
| 176 |  |  | i = 0; | 
| 177 |  |  | do { | 
| 178 |  |  | v [0] = v [1] = v [2] = 0; | 
| 179 |  |  | v [i++] = 1; | 
| 180 |  |  | fcross(u, v, ray -> rdir); | 
| 181 |  |  | } while (normalize(u) < FTINY); | 
| 182 |  |  | fcross(v, ray -> rdir, u); | 
| 183 |  |  |  | 
| 184 |  |  | for (i = 0; i < 3; i++) | 
| 185 |  |  | ray -> rdir [i] = du * u [i] + dv * v [i] + | 
| 186 |  |  | cosTheta * ray -> rdir [i]; | 
| 187 |  |  | ray -> rlvl++; | 
| 188 |  |  | ray -> rmax = -log(pmapRandom(mediumState)) / cext; | 
| 189 |  |  | } | 
| 190 |  |  |  | 
| 191 |  |  | setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), | 
| 192 |  |  | exp(-ray -> rot * ray -> cext [1]), | 
| 193 |  |  | exp(-ray -> rot * ray -> cext [2])); | 
| 194 |  |  |  | 
| 195 |  |  | /* Modify ray color and normalise */ | 
| 196 |  |  | multcolor(ray -> rcol, cvext); | 
| 197 |  |  | colorNorm(ray -> rcol); | 
| 198 |  |  |  | 
| 199 |  |  | /* Passed through medium */ | 
| 200 |  |  | return 1; | 
| 201 |  |  | } | 
| 202 |  |  |  | 
| 203 |  |  |  | 
| 204 |  |  |  | 
| 205 |  |  | void tracePhoton (RAY *ray) | 
| 206 |  |  | /* Follow photon as it bounces around... */ | 
| 207 |  |  | { | 
| 208 |  |  | long mod; | 
| 209 |  |  | OBJREC* mat; | 
| 210 |  |  |  | 
| 211 |  |  | if (ray -> rlvl > photonMaxBounce) { | 
| 212 | rschregle | 2.5 | #ifdef PMAP_RUNAWAY_WARN | 
| 213 | greg | 2.1 | error(WARNING, "runaway photon!"); | 
| 214 | rschregle | 2.5 | #endif | 
| 215 | greg | 2.1 | return; | 
| 216 |  |  | } | 
| 217 | rschregle | 2.5 |  | 
| 218 | greg | 2.1 | if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) | 
| 219 |  |  | return; | 
| 220 |  |  |  | 
| 221 |  |  | if (localhit(ray, &thescene)) { | 
| 222 |  |  | mod = ray -> ro -> omod; | 
| 223 |  |  |  | 
| 224 |  |  | if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { | 
| 225 |  |  | /* Transfer ray if modifier is VOID or clipped within antimatta */ | 
| 226 |  |  | RAY tray; | 
| 227 |  |  | photonRay(ray, &tray, PMAP_XFER, NULL); | 
| 228 |  |  | tracePhoton(&tray); | 
| 229 |  |  | } | 
| 230 |  |  | else { | 
| 231 |  |  | /* Scatter for modifier material */ | 
| 232 |  |  | mat = objptr(mod); | 
| 233 |  |  | photonScatter [mat -> otype] (mat, ray); | 
| 234 |  |  | } | 
| 235 |  |  | } | 
| 236 |  |  | } | 
| 237 |  |  |  | 
| 238 |  |  |  | 
| 239 |  |  |  | 
| 240 |  |  | static void preComputeGlobal (PhotonMap *pmap) | 
| 241 |  |  | /* Precompute irradiance from global photons for final gathering using | 
| 242 |  |  | the first finalGather * pmap -> heapSize photons in the heap. Returns | 
| 243 |  |  | new heap with precomputed photons. */ | 
| 244 |  |  | { | 
| 245 |  |  | unsigned long i, nuHeapSize; | 
| 246 |  |  | unsigned j; | 
| 247 |  |  | Photon *nuHeap, *p; | 
| 248 |  |  | COLOR irrad; | 
| 249 |  |  | RAY ray; | 
| 250 |  |  | float nuMinPos [3], nuMaxPos [3]; | 
| 251 |  |  |  | 
| 252 |  |  | repComplete = nuHeapSize = finalGather * pmap -> heapSize; | 
| 253 |  |  |  | 
| 254 |  |  | if (photonRepTime) { | 
| 255 |  |  | sprintf(errmsg, | 
| 256 |  |  | "Precomputing irradiance for %ld global photons...\n", | 
| 257 |  |  | nuHeapSize); | 
| 258 |  |  | eputs(errmsg); | 
| 259 |  |  | fflush(stderr); | 
| 260 |  |  | } | 
| 261 |  |  |  | 
| 262 |  |  | p = nuHeap = (Photon*)malloc(nuHeapSize * sizeof(Photon)); | 
| 263 |  |  | if (!nuHeap) | 
| 264 |  |  | error(USER, "can't allocate photon heap"); | 
| 265 |  |  |  | 
| 266 |  |  | for (j = 0; j <= 2; j++) { | 
| 267 |  |  | nuMinPos [j] = FHUGE; | 
| 268 |  |  | nuMaxPos [j] = -FHUGE; | 
| 269 |  |  | } | 
| 270 |  |  |  | 
| 271 |  |  | /* Record start time, baby */ | 
| 272 |  |  | repStartTime = time(NULL); | 
| 273 | rschregle | 2.3 | #ifdef SIGCONT | 
| 274 |  |  | signal(SIGCONT, pmapPreCompReport); | 
| 275 |  |  | #endif | 
| 276 | greg | 2.1 | repProgress = 0; | 
| 277 | greg | 2.2 | memcpy(nuHeap, pmap -> heap, nuHeapSize * sizeof(Photon)); | 
| 278 | greg | 2.1 |  | 
| 279 |  |  | for (i = 0, p = nuHeap; i < nuHeapSize; i++, p++) { | 
| 280 |  |  | ray.ro = NULL; | 
| 281 |  |  | VCOPY(ray.rop, p -> pos); | 
| 282 |  |  |  | 
| 283 |  |  | /* Update min and max positions & set ray normal */ | 
| 284 |  |  | for (j = 0; j < 3; j++) { | 
| 285 |  |  | if (p -> pos [j] < nuMinPos [j]) nuMinPos [j] = p -> pos [j]; | 
| 286 |  |  | if (p -> pos [j] > nuMaxPos [j]) nuMaxPos [j] = p -> pos [j]; | 
| 287 |  |  | ray.ron [j] = p -> norm [j] / 127.0; | 
| 288 |  |  | } | 
| 289 |  |  |  | 
| 290 |  |  | photonDensity(pmap, &ray, irrad); | 
| 291 |  |  | setPhotonFlux(p, irrad); | 
| 292 |  |  | repProgress++; | 
| 293 |  |  |  | 
| 294 |  |  | if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) | 
| 295 |  |  | pmapPreCompReport(); | 
| 296 | rschregle | 2.3 | #ifdef SIGCONT | 
| 297 |  |  | else signal(SIGCONT, pmapPreCompReport); | 
| 298 |  |  | #endif | 
| 299 | greg | 2.1 | } | 
| 300 |  |  |  | 
| 301 | rschregle | 2.3 | #ifdef SIGCONT | 
| 302 |  |  | signal(SIGCONT, SIG_DFL); | 
| 303 |  |  | #endif | 
| 304 | greg | 2.1 |  | 
| 305 |  |  | /* Replace & rebuild heap */ | 
| 306 |  |  | free(pmap -> heap); | 
| 307 |  |  | pmap -> heap = nuHeap; | 
| 308 |  |  | pmap -> heapSize = pmap -> heapEnd = nuHeapSize; | 
| 309 |  |  | VCOPY(pmap -> minPos, nuMinPos); | 
| 310 |  |  | VCOPY(pmap -> maxPos, nuMaxPos); | 
| 311 |  |  |  | 
| 312 |  |  | if (photonRepTime) { | 
| 313 |  |  | eputs("Rebuilding global photon heap...\n"); | 
| 314 |  |  | fflush(stderr); | 
| 315 |  |  | } | 
| 316 |  |  |  | 
| 317 |  |  | balancePhotons(pmap, NULL); | 
| 318 |  |  | } | 
| 319 |  |  |  | 
| 320 |  |  |  | 
| 321 |  |  |  | 
| 322 |  |  | void distribPhotons (PhotonMap **pmaps) | 
| 323 |  |  | { | 
| 324 |  |  | EmissionMap emap; | 
| 325 |  |  | char errmsg2 [128]; | 
| 326 |  |  | unsigned t, srcIdx, passCnt = 0, prePassCnt = 0; | 
| 327 |  |  | double totalFlux = 0; | 
| 328 |  |  | PhotonMap *pm; | 
| 329 |  |  |  | 
| 330 | rschregle | 2.8 | for (t = 0; t < NUM_PMAP_TYPES && !pmaps [t]; t++); | 
| 331 | greg | 2.1 | if (t >= NUM_PMAP_TYPES) | 
| 332 |  |  | error(USER, "no photon maps defined"); | 
| 333 |  |  |  | 
| 334 |  |  | if (!nsources) | 
| 335 |  |  | error(USER, "no light sources"); | 
| 336 |  |  |  | 
| 337 |  |  | /* =================================================================== | 
| 338 |  |  | * INITIALISATION - Set up emission and scattering funcs | 
| 339 |  |  | * =================================================================== */ | 
| 340 |  |  | emap.samples = NULL; | 
| 341 |  |  | emap.maxPartitions = MAXSPART; | 
| 342 |  |  | emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); | 
| 343 |  |  | if (!emap.partitions) | 
| 344 |  |  | error(INTERNAL, "can't allocate source partitions"); | 
| 345 |  |  |  | 
| 346 |  |  | /* Initialise all defined photon maps */ | 
| 347 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 348 | rschregle | 2.8 | initPhotonMap(pmaps [t], t); | 
| 349 | greg | 2.1 |  | 
| 350 |  |  | initPhotonEmissionFuncs(); | 
| 351 |  |  | initPhotonScatterFuncs(); | 
| 352 |  |  |  | 
| 353 |  |  | /* Get photon ports if specified */ | 
| 354 |  |  | if (ambincl == 1) | 
| 355 |  |  | getPhotonPorts(); | 
| 356 |  |  |  | 
| 357 |  |  | /* Get photon sensor modifiers */ | 
| 358 |  |  | getPhotonSensors(photonSensorList); | 
| 359 |  |  |  | 
| 360 |  |  | /* Seed RNGs for photon distribution */ | 
| 361 |  |  | pmapSeed(randSeed, partState); | 
| 362 |  |  | pmapSeed(randSeed, emitState); | 
| 363 |  |  | pmapSeed(randSeed, cntState); | 
| 364 |  |  | pmapSeed(randSeed, mediumState); | 
| 365 |  |  | pmapSeed(randSeed, scatterState); | 
| 366 |  |  | pmapSeed(randSeed, rouletteState); | 
| 367 |  |  |  | 
| 368 |  |  | if (photonRepTime) | 
| 369 |  |  | eputs("\n"); | 
| 370 |  |  |  | 
| 371 |  |  | /* =================================================================== | 
| 372 |  |  | * FLUX INTEGRATION - Get total photon flux from light sources | 
| 373 |  |  | * =================================================================== */ | 
| 374 |  |  | for (srcIdx = 0; srcIdx < nsources; srcIdx++) { | 
| 375 |  |  | unsigned portCnt = 0; | 
| 376 |  |  | emap.src = source + srcIdx; | 
| 377 |  |  |  | 
| 378 |  |  | do { | 
| 379 |  |  | emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt | 
| 380 |  |  | : NULL; | 
| 381 |  |  | photonPartition [emap.src -> so -> otype] (&emap); | 
| 382 |  |  |  | 
| 383 |  |  | if (photonRepTime) { | 
| 384 |  |  | sprintf(errmsg, "Integrating flux from source %s ", | 
| 385 |  |  | source [srcIdx].so -> oname); | 
| 386 |  |  |  | 
| 387 |  |  | if (emap.port) { | 
| 388 |  |  | sprintf(errmsg2, "via port %s ", | 
| 389 |  |  | photonPorts [portCnt].so -> oname); | 
| 390 |  |  | strcat(errmsg, errmsg2); | 
| 391 |  |  | } | 
| 392 |  |  |  | 
| 393 |  |  | sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); | 
| 394 |  |  | strcat(errmsg, errmsg2); | 
| 395 |  |  | eputs(errmsg); | 
| 396 |  |  | fflush(stderr); | 
| 397 |  |  | } | 
| 398 |  |  |  | 
| 399 |  |  | for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; | 
| 400 |  |  | emap.partitionCnt++) { | 
| 401 |  |  | initPhotonEmission(&emap, pdfSamples); | 
| 402 |  |  | totalFlux += colorAvg(emap.partFlux); | 
| 403 |  |  | } | 
| 404 |  |  |  | 
| 405 |  |  | portCnt++; | 
| 406 |  |  | } while (portCnt < numPhotonPorts); | 
| 407 |  |  | } | 
| 408 |  |  |  | 
| 409 |  |  | if (totalFlux < FTINY) | 
| 410 |  |  | error(USER, "zero flux from light sources"); | 
| 411 |  |  |  | 
| 412 |  |  | /* Record start time and enable progress report signal handler */ | 
| 413 |  |  | repStartTime = time(NULL); | 
| 414 | rschregle | 2.3 | #ifdef SIGCONT | 
| 415 |  |  | signal(SIGCONT, pmapDistribReport); | 
| 416 |  |  | #endif | 
| 417 | greg | 2.1 | repProgress = prePassCnt = 0; | 
| 418 |  |  |  | 
| 419 |  |  | if (photonRepTime) | 
| 420 |  |  | eputs("\n"); | 
| 421 |  |  |  | 
| 422 |  |  | /* =================================================================== | 
| 423 |  |  | * 2-PASS PHOTON DISTRIBUTION | 
| 424 |  |  | * Pass 1 (pre):  emit fraction of target photon count | 
| 425 |  |  | * Pass 2 (main): based on outcome of pass 1, estimate remaining number | 
| 426 |  |  | *                of photons to emit to approximate target count | 
| 427 |  |  | * =================================================================== */ | 
| 428 |  |  | do { | 
| 429 |  |  | double numEmit; | 
| 430 |  |  |  | 
| 431 |  |  | if (!passCnt) { | 
| 432 |  |  | /* INIT PASS 1 */ | 
| 433 |  |  | /* Skip if no photons contributed after sufficient iterations; make | 
| 434 |  |  | * it clear to user which photon maps are missing so (s)he can | 
| 435 |  |  | * check the scene geometry and materials */ | 
| 436 |  |  | if (++prePassCnt > maxPreDistrib) { | 
| 437 |  |  | sprintf(errmsg, "too many prepasses"); | 
| 438 |  |  |  | 
| 439 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 440 | rschregle | 2.8 | if (pmaps [t] && !pmaps [t] -> heapEnd) { | 
| 441 | greg | 2.1 | sprintf(errmsg2, ", no %s photons stored", pmapName [t]); | 
| 442 |  |  | strcat(errmsg, errmsg2); | 
| 443 |  |  | } | 
| 444 |  |  |  | 
| 445 |  |  | error(USER, errmsg); | 
| 446 |  |  | break; | 
| 447 |  |  | } | 
| 448 |  |  |  | 
| 449 |  |  | /* Num to emit is fraction of minimum target count */ | 
| 450 |  |  | numEmit = FHUGE; | 
| 451 |  |  |  | 
| 452 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 453 | rschregle | 2.8 | if (pmaps [t]) | 
| 454 |  |  | numEmit = min(pmaps [t] -> distribTarget, numEmit); | 
| 455 | greg | 2.1 |  | 
| 456 |  |  | numEmit *= preDistrib; | 
| 457 |  |  | } | 
| 458 |  |  |  | 
| 459 |  |  | else { | 
| 460 |  |  | /* INIT PASS 2 */ | 
| 461 |  |  | /* Based on the outcome of the predistribution we can now estimate | 
| 462 |  |  | * how many more photons we have to emit for each photon map to | 
| 463 |  |  | * meet its respective target count. This value is clamped to 0 in | 
| 464 |  |  | * case the target has already been exceeded in the pass 1. Note | 
| 465 |  |  | * repProgress is the number of photons emitted thus far, while | 
| 466 |  |  | * heapEnd is the number of photons stored in each photon map. */ | 
| 467 |  |  | double maxDistribRatio = 0; | 
| 468 |  |  |  | 
| 469 |  |  | /* Set the distribution ratio for each map; this indicates how many | 
| 470 |  |  | * photons of each respective type are stored per emitted photon, | 
| 471 |  |  | * and is used as probability for storing a photon by addPhoton(). | 
| 472 |  |  | * Since this biases the photon density, addPhoton() promotes the | 
| 473 |  |  | * flux of stored photons to compensate. */ | 
| 474 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 475 | rschregle | 2.8 | if ((pm = pmaps [t])) { | 
| 476 | greg | 2.1 | pm -> distribRatio = (double)pm -> distribTarget / | 
| 477 |  |  | pm -> heapEnd - 1; | 
| 478 |  |  |  | 
| 479 |  |  | /* Check if photon map "overflowed", i.e. exceeded its target | 
| 480 |  |  | * count in the prepass; correcting the photon flux via the | 
| 481 |  |  | * distribution ratio is no longer possible, as no more | 
| 482 |  |  | * photons of this type will be stored, so notify the user | 
| 483 |  |  | * rather than deliver incorrect results. | 
| 484 |  |  | * In future we should handle this more intelligently by | 
| 485 |  |  | * using the photonFlux in each photon map to individually | 
| 486 |  |  | * correct the flux after distribution. */ | 
| 487 |  |  | if (pm -> distribRatio <= FTINY) { | 
| 488 |  |  | sprintf(errmsg, | 
| 489 |  |  | "%s photon map overflow in prepass, reduce -apD", | 
| 490 |  |  | pmapName [t]); | 
| 491 |  |  | error(INTERNAL, errmsg); | 
| 492 |  |  | } | 
| 493 |  |  |  | 
| 494 |  |  | maxDistribRatio = max(pm -> distribRatio, maxDistribRatio); | 
| 495 |  |  | } | 
| 496 |  |  |  | 
| 497 |  |  | /* Normalise distribution ratios and calculate number of photons to | 
| 498 |  |  | * emit in main pass */ | 
| 499 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 500 | rschregle | 2.8 | if ((pm = pmaps [t])) | 
| 501 | greg | 2.1 | pm -> distribRatio /= maxDistribRatio; | 
| 502 |  |  |  | 
| 503 |  |  | if ((numEmit = repProgress * maxDistribRatio) < FTINY) | 
| 504 |  |  | /* No photons left to distribute in main pass */ | 
| 505 |  |  | break; | 
| 506 |  |  | } | 
| 507 |  |  |  | 
| 508 |  |  | /* Set completion count for progress report */ | 
| 509 |  |  | repComplete = numEmit + repProgress; | 
| 510 |  |  |  | 
| 511 |  |  | /* PHOTON DISTRIBUTION LOOP */ | 
| 512 |  |  | for (srcIdx = 0; srcIdx < nsources; srcIdx++) { | 
| 513 |  |  | unsigned portCnt = 0; | 
| 514 |  |  | emap.src = source + srcIdx; | 
| 515 | greg | 2.6 |  | 
| 516 | greg | 2.1 | do { | 
| 517 |  |  | emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt | 
| 518 |  |  | : NULL; | 
| 519 |  |  | photonPartition [emap.src -> so -> otype] (&emap); | 
| 520 |  |  |  | 
| 521 |  |  | if (photonRepTime) { | 
| 522 |  |  | if (!passCnt) | 
| 523 |  |  | sprintf(errmsg, "PREPASS %d on source %s ", | 
| 524 |  |  | prePassCnt, source [srcIdx].so -> oname); | 
| 525 |  |  | else | 
| 526 |  |  | sprintf(errmsg, "MAIN PASS on source %s ", | 
| 527 |  |  | source [srcIdx].so -> oname); | 
| 528 |  |  |  | 
| 529 |  |  | if (emap.port) { | 
| 530 |  |  | sprintf(errmsg2, "via port %s ", | 
| 531 |  |  | photonPorts [portCnt].so -> oname); | 
| 532 |  |  | strcat(errmsg, errmsg2); | 
| 533 |  |  | } | 
| 534 |  |  |  | 
| 535 |  |  | sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); | 
| 536 |  |  | strcat(errmsg, errmsg2); | 
| 537 |  |  | eputs(errmsg); | 
| 538 |  |  | fflush(stderr); | 
| 539 |  |  | } | 
| 540 |  |  |  | 
| 541 |  |  | for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; | 
| 542 |  |  | emap.partitionCnt++) { | 
| 543 |  |  | double partNumEmit; | 
| 544 |  |  | unsigned long partEmitCnt; | 
| 545 |  |  |  | 
| 546 |  |  | /* Get photon origin within current source partishunn and | 
| 547 |  |  | * build emission map */ | 
| 548 |  |  | photonOrigin [emap.src -> so -> otype] (&emap); | 
| 549 |  |  | initPhotonEmission(&emap, pdfSamples); | 
| 550 |  |  |  | 
| 551 |  |  | /* Number of photons to emit from ziss partishunn -- | 
| 552 |  |  | * proportional to flux; photon ray weight and scalar flux | 
| 553 |  |  | * are uniform (the latter only varying in RGB). */ | 
| 554 |  |  | partNumEmit = numEmit * colorAvg(emap.partFlux) / totalFlux; | 
| 555 |  |  | partEmitCnt = (unsigned long)partNumEmit; | 
| 556 |  |  |  | 
| 557 |  |  | /* Probabilistically account for fractional photons */ | 
| 558 |  |  | if (pmapRandom(cntState) < partNumEmit - partEmitCnt) | 
| 559 |  |  | partEmitCnt++; | 
| 560 |  |  |  | 
| 561 |  |  | /* Integer counter avoids FP rounding errors */ | 
| 562 |  |  | while (partEmitCnt--) { | 
| 563 |  |  | RAY photonRay; | 
| 564 |  |  |  | 
| 565 |  |  | /* Emit photon based on PDF and trace through scene until | 
| 566 |  |  | * absorbed/leaked */ | 
| 567 |  |  | emitPhoton(&emap, &photonRay); | 
| 568 |  |  | tracePhoton(&photonRay); | 
| 569 |  |  |  | 
| 570 |  |  | /* Record progress */ | 
| 571 |  |  | repProgress++; | 
| 572 |  |  |  | 
| 573 |  |  | if (photonRepTime > 0 && | 
| 574 |  |  | time(NULL) >= repLastTime + photonRepTime) | 
| 575 |  |  | pmapDistribReport(); | 
| 576 | rschregle | 2.3 | #ifdef SIGCONT | 
| 577 | greg | 2.1 | else signal(SIGCONT, pmapDistribReport); | 
| 578 |  |  | #endif | 
| 579 |  |  | } | 
| 580 |  |  | } | 
| 581 |  |  |  | 
| 582 |  |  | portCnt++; | 
| 583 |  |  | } while (portCnt < numPhotonPorts); | 
| 584 |  |  | } | 
| 585 |  |  |  | 
| 586 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 587 | rschregle | 2.8 | if (pmaps [t] && !pmaps [t] -> heapEnd) { | 
| 588 | greg | 2.1 | /* Double preDistrib in case a photon map is empty and redo | 
| 589 |  |  | * pass 1 --> possibility of infinite loop for pathological | 
| 590 |  |  | * scenes (e.g. absorbing materials) */ | 
| 591 |  |  | preDistrib *= 2; | 
| 592 |  |  | break; | 
| 593 |  |  | } | 
| 594 |  |  |  | 
| 595 |  |  | if (t >= NUM_PMAP_TYPES) { | 
| 596 |  |  | /* No empty photon maps found; now do pass 2 */ | 
| 597 |  |  | passCnt++; | 
| 598 |  |  | if (photonRepTime) | 
| 599 |  |  | eputs("\n"); | 
| 600 |  |  | } | 
| 601 |  |  | } while (passCnt < 2); | 
| 602 |  |  |  | 
| 603 |  |  | /* =================================================================== | 
| 604 |  |  | * POST-DISTRIBUTION - Set photon flux and build kd-tree, etc. | 
| 605 |  |  | * =================================================================== */ | 
| 606 | rschregle | 2.3 | #ifdef SIGCONT | 
| 607 |  |  | signal(SIGCONT, SIG_DFL); | 
| 608 |  |  | #endif | 
| 609 | greg | 2.1 | free(emap.samples); | 
| 610 |  |  |  | 
| 611 |  |  | /* Set photon flux (repProgress is total num emitted) */ | 
| 612 |  |  | totalFlux /= repProgress; | 
| 613 |  |  |  | 
| 614 |  |  | for (t = 0; t < NUM_PMAP_TYPES; t++) | 
| 615 | rschregle | 2.8 | if (pmaps [t]) { | 
| 616 | greg | 2.1 | if (photonRepTime) { | 
| 617 |  |  | sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); | 
| 618 |  |  | eputs(errmsg); | 
| 619 |  |  | fflush(stderr); | 
| 620 |  |  | } | 
| 621 |  |  |  | 
| 622 | rschregle | 2.8 | balancePhotons(pmaps [t], &totalFlux); | 
| 623 | greg | 2.1 | } | 
| 624 |  |  |  | 
| 625 |  |  | /* Precompute photon irradiance if necessary */ | 
| 626 |  |  | if (preCompPmap) | 
| 627 |  |  | preComputeGlobal(preCompPmap); | 
| 628 |  |  | } | 
| 629 |  |  |  | 
| 630 |  |  |  | 
| 631 |  |  |  | 
| 632 |  |  | void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) | 
| 633 |  |  | /* Photon density estimate. Returns irradiance at ray -> rop. */ | 
| 634 |  |  | { | 
| 635 |  |  | unsigned i; | 
| 636 |  |  | PhotonSQNode *sq; | 
| 637 |  |  | float r; | 
| 638 |  |  | COLOR flux; | 
| 639 |  |  |  | 
| 640 |  |  | setcolor(irrad, 0, 0, 0); | 
| 641 |  |  |  | 
| 642 |  |  | if (!pmap -> maxGather) | 
| 643 |  |  | return; | 
| 644 |  |  |  | 
| 645 |  |  | /* Ignore sources */ | 
| 646 |  |  | if (ray -> ro) | 
| 647 |  |  | if (islight(objptr(ray -> ro -> omod) -> otype)) | 
| 648 |  |  | return; | 
| 649 |  |  |  | 
| 650 |  |  | pmap -> squeueEnd = 0; | 
| 651 |  |  | findPhotons(pmap, ray); | 
| 652 |  |  |  | 
| 653 |  |  | /* Need at least 2 photons */ | 
| 654 |  |  | if (pmap -> squeueEnd < 2) { | 
| 655 |  |  | #ifdef PMAP_NONEFOUND | 
| 656 |  |  | sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", | 
| 657 |  |  | ray -> ro ? ray -> ro -> oname : "<null>", | 
| 658 |  |  | ray -> rop [0], ray -> rop [1], ray -> rop [2]); | 
| 659 |  |  | error(WARNING, errmsg); | 
| 660 |  |  | #endif | 
| 661 |  |  |  | 
| 662 |  |  | return; | 
| 663 |  |  | } | 
| 664 |  |  |  | 
| 665 |  |  | if (pmap -> minGather == pmap -> maxGather) { | 
| 666 |  |  | /* No bias compensation. Just do a plain vanilla estimate */ | 
| 667 |  |  | sq = pmap -> squeue + 1; | 
| 668 |  |  |  | 
| 669 |  |  | /* Average radius between furthest two photons to improve accuracy */ | 
| 670 |  |  | r = max(sq -> dist, (sq + 1) -> dist); | 
| 671 |  |  | r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); | 
| 672 |  |  |  | 
| 673 |  |  | /* Skip the extra photon */ | 
| 674 |  |  | for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { | 
| 675 |  |  | getPhotonFlux(sq -> photon, flux); | 
| 676 |  |  | #ifdef PMAP_EPANECHNIKOV | 
| 677 |  |  | /* Apply Epanechnikov kernel to photon flux (dists are squared) */ | 
| 678 |  |  | scalecolor(flux, 2 * (1 - sq -> dist / r)); | 
| 679 |  |  | #endif | 
| 680 |  |  | addcolor(irrad, flux); | 
| 681 |  |  | } | 
| 682 |  |  |  | 
| 683 |  |  | /* Divide by search area PI * r^2, 1 / PI required as ambient | 
| 684 |  |  | normalisation factor */ | 
| 685 |  |  | scalecolor(irrad, 1 / (PI * PI * r)); | 
| 686 |  |  |  | 
| 687 |  |  | return; | 
| 688 |  |  | } | 
| 689 |  |  | else | 
| 690 |  |  | /* Apply bias compensation to density estimate */ | 
| 691 |  |  | biasComp(pmap, irrad); | 
| 692 |  |  | } | 
| 693 |  |  |  | 
| 694 |  |  |  | 
| 695 |  |  |  | 
| 696 |  |  | void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) | 
| 697 |  |  | /* Returns precomputed photon density estimate at ray -> rop. */ | 
| 698 |  |  | { | 
| 699 |  |  | Photon *p; | 
| 700 |  |  |  | 
| 701 |  |  | setcolor(irrad, 0, 0, 0); | 
| 702 |  |  |  | 
| 703 |  |  | /* Ignore sources */ | 
| 704 |  |  | if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) | 
| 705 |  |  | return; | 
| 706 |  |  |  | 
| 707 |  |  | if ((p = find1Photon(preCompPmap, r))) | 
| 708 |  |  | getPhotonFlux(p, irrad); | 
| 709 |  |  | } | 
| 710 |  |  |  | 
| 711 |  |  |  | 
| 712 |  |  |  | 
| 713 |  |  | void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) | 
| 714 |  |  | /* Photon volume density estimate. Returns irradiance at ray -> rop. */ | 
| 715 |  |  | { | 
| 716 |  |  | unsigned i; | 
| 717 |  |  | PhotonSQNode *sq; | 
| 718 |  |  | float gecc2, r, ph; | 
| 719 |  |  | COLOR flux; | 
| 720 |  |  |  | 
| 721 |  |  | setcolor(irrad, 0, 0, 0); | 
| 722 |  |  |  | 
| 723 |  |  | if (!pmap -> maxGather) | 
| 724 |  |  | return; | 
| 725 |  |  |  | 
| 726 |  |  | pmap -> squeueEnd = 0; | 
| 727 |  |  | findPhotons(pmap, ray); | 
| 728 |  |  |  | 
| 729 |  |  | /* Need at least 2 photons */ | 
| 730 |  |  | if (pmap -> squeueEnd < 2) | 
| 731 |  |  | return; | 
| 732 |  |  |  | 
| 733 |  |  | if (pmap -> minGather == pmap -> maxGather) { | 
| 734 |  |  | /* No bias compensation. Just do a plain vanilla estimate */ | 
| 735 |  |  | gecc2 = ray -> gecc * ray -> gecc; | 
| 736 |  |  | sq = pmap -> squeue + 1; | 
| 737 |  |  |  | 
| 738 |  |  | /* Average radius between furthest two photons to improve accuracy */ | 
| 739 |  |  | r = max(sq -> dist, (sq + 1) -> dist); | 
| 740 |  |  | r = 0.25 * (pmap -> maxDist + r + 2 * sqrt(pmap -> maxDist * r)); | 
| 741 |  |  |  | 
| 742 |  |  | /* Skip the extra photon */ | 
| 743 |  |  | for (i = 1 ; i < pmap -> squeueEnd; i++, sq++) { | 
| 744 |  |  | /* Compute phase function for inscattering from photon */ | 
| 745 |  |  | if (gecc2 <= FTINY) | 
| 746 |  |  | ph = 1; | 
| 747 |  |  | else { | 
| 748 |  |  | ph = DOT(ray -> rdir, sq -> photon -> norm) / 127; | 
| 749 |  |  | ph = 1 + gecc2 - 2 * ray -> gecc * ph; | 
| 750 |  |  | ph = (1 - gecc2) / (ph * sqrt(ph)); | 
| 751 |  |  | } | 
| 752 |  |  |  | 
| 753 |  |  | getPhotonFlux(sq -> photon, flux); | 
| 754 |  |  | scalecolor(flux, ph); | 
| 755 |  |  | addcolor(irrad, flux); | 
| 756 |  |  | } | 
| 757 |  |  |  | 
| 758 |  |  | /* Divide by search volume 4 / 3 * PI * r^3 and phase function | 
| 759 |  |  | normalization factor 1 / (4 * PI) */ | 
| 760 |  |  | scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); | 
| 761 |  |  |  | 
| 762 |  |  | return; | 
| 763 |  |  | } | 
| 764 |  |  |  | 
| 765 |  |  | else | 
| 766 |  |  | /* Apply bias compensation to density estimate */ | 
| 767 |  |  | volumeBiasComp(pmap, ray, irrad); | 
| 768 |  |  | } |