| 1 |
greg |
2.9 |
#ifndef lint |
| 2 |
rschregle |
2.11 |
static const char RCSid[] = "$Id: pmap.c,v 4.33.1.10 2016/05/11 12:50:54 taschreg Exp taschreg $"; |
| 3 |
greg |
2.9 |
#endif |
| 4 |
rschregle |
2.11 |
|
| 5 |
greg |
2.1 |
/* |
| 6 |
rschregle |
2.11 |
====================================================================== |
| 7 |
greg |
2.1 |
Photon map main module |
| 8 |
|
|
|
| 9 |
|
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
| 10 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems, |
| 11 |
rschregle |
2.4 |
(c) Lucerne University of Applied Sciences and Arts, |
| 12 |
rschregle |
2.11 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
| 13 |
|
|
====================================================================== |
| 14 |
greg |
2.1 |
|
| 15 |
rschregle |
2.11 |
$Id: pmap.c,v 4.33.1.10 2016/05/11 12:50:54 taschreg Exp taschreg $ |
| 16 |
greg |
2.1 |
*/ |
| 17 |
|
|
|
| 18 |
|
|
|
| 19 |
|
|
|
| 20 |
|
|
#include "pmap.h" |
| 21 |
|
|
#include "pmapmat.h" |
| 22 |
|
|
#include "pmapsrc.h" |
| 23 |
|
|
#include "pmaprand.h" |
| 24 |
|
|
#include "pmapio.h" |
| 25 |
|
|
#include "pmapbias.h" |
| 26 |
|
|
#include "pmapdiag.h" |
| 27 |
|
|
#include "otypes.h" |
| 28 |
|
|
#include <time.h> |
| 29 |
|
|
#include <sys/stat.h> |
| 30 |
rschregle |
2.11 |
#include <sys/mman.h> |
| 31 |
|
|
#include <sys/wait.h> |
| 32 |
greg |
2.1 |
|
| 33 |
rschregle |
2.11 |
#define PMAP_REV "$Revision: 4.33.1.10 $" |
| 34 |
greg |
2.1 |
|
| 35 |
|
|
|
| 36 |
|
|
extern char *octname; |
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
|
| 40 |
|
|
/* Photon map lookup functions per type */ |
| 41 |
|
|
void (*pmapLookup [NUM_PMAP_TYPES])(PhotonMap*, RAY*, COLOR) = { |
| 42 |
|
|
photonDensity, photonPreCompDensity, photonDensity, volumePhotonDensity, |
| 43 |
|
|
photonDensity, NULL |
| 44 |
|
|
}; |
| 45 |
|
|
|
| 46 |
|
|
|
| 47 |
|
|
|
| 48 |
|
|
void colorNorm (COLOR c) |
| 49 |
|
|
/* Normalise colour channels to average of 1 */ |
| 50 |
|
|
{ |
| 51 |
|
|
const float avg = colorAvg(c); |
| 52 |
|
|
|
| 53 |
|
|
if (!avg) |
| 54 |
|
|
return; |
| 55 |
|
|
|
| 56 |
|
|
c [0] /= avg; |
| 57 |
|
|
c [1] /= avg; |
| 58 |
|
|
c [2] /= avg; |
| 59 |
|
|
} |
| 60 |
|
|
|
| 61 |
|
|
|
| 62 |
|
|
|
| 63 |
|
|
void loadPmaps (PhotonMap **pmaps, const PhotonMapParams *parm) |
| 64 |
|
|
{ |
| 65 |
|
|
unsigned t; |
| 66 |
|
|
struct stat octstat, pmstat; |
| 67 |
|
|
PhotonMap *pm; |
| 68 |
|
|
PhotonMapType type; |
| 69 |
|
|
|
| 70 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 71 |
|
|
if (setPmapParam(&pm, parm + t)) { |
| 72 |
|
|
/* Check if photon map newer than octree */ |
| 73 |
rschregle |
2.4 |
if (pm -> fileName && octname && |
| 74 |
|
|
!stat(pm -> fileName, &pmstat) && !stat(octname, &octstat) && |
| 75 |
greg |
2.1 |
octstat.st_mtime > pmstat.st_mtime) { |
| 76 |
|
|
sprintf(errmsg, "photon map in file %s may be stale", |
| 77 |
|
|
pm -> fileName); |
| 78 |
|
|
error(USER, errmsg); |
| 79 |
|
|
} |
| 80 |
|
|
|
| 81 |
|
|
/* Load photon map from file and get its type */ |
| 82 |
|
|
if ((type = loadPhotonMap(pm, pm -> fileName)) == PMAP_TYPE_NONE) |
| 83 |
|
|
error(USER, "failed loading photon map"); |
| 84 |
|
|
|
| 85 |
|
|
/* Assign to appropriate photon map type (deleting previously |
| 86 |
|
|
* loaded photon map of same type if necessary) */ |
| 87 |
|
|
if (pmaps [type]) { |
| 88 |
|
|
deletePhotons(pmaps [type]); |
| 89 |
|
|
free(pmaps [type]); |
| 90 |
|
|
} |
| 91 |
|
|
pmaps [type] = pm; |
| 92 |
|
|
|
| 93 |
|
|
/* Check for invalid density estimate bandwidth */ |
| 94 |
rschregle |
2.11 |
if (pm -> maxGather > pm -> numPhotons) { |
| 95 |
greg |
2.1 |
error(WARNING, "adjusting density estimate bandwidth"); |
| 96 |
rschregle |
2.11 |
pm -> minGather = pm -> maxGather = pm -> numPhotons; |
| 97 |
greg |
2.1 |
} |
| 98 |
|
|
} |
| 99 |
|
|
} |
| 100 |
|
|
|
| 101 |
|
|
|
| 102 |
|
|
|
| 103 |
|
|
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
| 104 |
|
|
{ |
| 105 |
|
|
unsigned t; |
| 106 |
|
|
|
| 107 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
| 108 |
|
|
if (pmaps [t]) |
| 109 |
greg |
2.7 |
savePhotonMap(pmaps [t], pmaps [t] -> fileName, argc, argv); |
| 110 |
greg |
2.1 |
} |
| 111 |
|
|
} |
| 112 |
|
|
|
| 113 |
|
|
|
| 114 |
|
|
|
| 115 |
|
|
void cleanUpPmaps (PhotonMap **pmaps) |
| 116 |
|
|
{ |
| 117 |
|
|
unsigned t; |
| 118 |
|
|
|
| 119 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
| 120 |
|
|
if (pmaps [t]) { |
| 121 |
|
|
deletePhotons(pmaps [t]); |
| 122 |
|
|
free(pmaps [t]); |
| 123 |
|
|
} |
| 124 |
|
|
} |
| 125 |
|
|
} |
| 126 |
|
|
|
| 127 |
|
|
|
| 128 |
|
|
|
| 129 |
|
|
static int photonParticipate (RAY *ray) |
| 130 |
|
|
/* Trace photon through participating medium. Returns 1 if passed through, |
| 131 |
|
|
or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */ |
| 132 |
|
|
{ |
| 133 |
|
|
int i; |
| 134 |
|
|
RREAL cosTheta, cosPhi, du, dv; |
| 135 |
|
|
const float cext = colorAvg(ray -> cext), |
| 136 |
|
|
albedo = colorAvg(ray -> albedo); |
| 137 |
|
|
FVECT u, v; |
| 138 |
|
|
COLOR cvext; |
| 139 |
|
|
|
| 140 |
|
|
/* Mean free distance until interaction with medium */ |
| 141 |
|
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
| 142 |
|
|
|
| 143 |
|
|
while (!localhit(ray, &thescene)) { |
| 144 |
|
|
setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), |
| 145 |
|
|
exp(-ray -> rmax * ray -> cext [1]), |
| 146 |
|
|
exp(-ray -> rmax * ray -> cext [2])); |
| 147 |
|
|
|
| 148 |
|
|
/* Modify ray color and normalise */ |
| 149 |
|
|
multcolor(ray -> rcol, cvext); |
| 150 |
|
|
colorNorm(ray -> rcol); |
| 151 |
|
|
VCOPY(ray -> rorg, ray -> rop); |
| 152 |
|
|
|
| 153 |
rschregle |
2.11 |
if (albedo > FTINY && ray -> rlvl > 0) |
| 154 |
greg |
2.1 |
/* Add to volume photon map */ |
| 155 |
rschregle |
2.11 |
newPhoton(volumePmap, ray); |
| 156 |
greg |
2.1 |
|
| 157 |
|
|
/* Absorbed? */ |
| 158 |
rschregle |
2.11 |
if (pmapRandom(rouletteState) > albedo) |
| 159 |
|
|
return 0; |
| 160 |
greg |
2.1 |
|
| 161 |
|
|
/* Colour bleeding without attenuation (?) */ |
| 162 |
|
|
multcolor(ray -> rcol, ray -> albedo); |
| 163 |
|
|
scalecolor(ray -> rcol, 1 / albedo); |
| 164 |
|
|
|
| 165 |
|
|
/* Scatter photon */ |
| 166 |
|
|
cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1 |
| 167 |
|
|
: 1 / (2 * ray -> gecc) * |
| 168 |
|
|
(1 + ray -> gecc * ray -> gecc - |
| 169 |
|
|
(1 - ray -> gecc * ray -> gecc) / |
| 170 |
|
|
(1 - ray -> gecc + 2 * ray -> gecc * |
| 171 |
|
|
pmapRandom(scatterState))); |
| 172 |
|
|
|
| 173 |
|
|
cosPhi = cos(2 * PI * pmapRandom(scatterState)); |
| 174 |
|
|
du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */ |
| 175 |
|
|
du *= cosPhi; |
| 176 |
|
|
dv *= sqrt(1 - cosPhi * cosPhi); /* sin(phi) */ |
| 177 |
|
|
|
| 178 |
|
|
/* Get axes u & v perpendicular to photon direction */ |
| 179 |
|
|
i = 0; |
| 180 |
|
|
do { |
| 181 |
|
|
v [0] = v [1] = v [2] = 0; |
| 182 |
|
|
v [i++] = 1; |
| 183 |
|
|
fcross(u, v, ray -> rdir); |
| 184 |
|
|
} while (normalize(u) < FTINY); |
| 185 |
|
|
fcross(v, ray -> rdir, u); |
| 186 |
|
|
|
| 187 |
|
|
for (i = 0; i < 3; i++) |
| 188 |
|
|
ray -> rdir [i] = du * u [i] + dv * v [i] + |
| 189 |
|
|
cosTheta * ray -> rdir [i]; |
| 190 |
|
|
ray -> rlvl++; |
| 191 |
|
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
| 192 |
|
|
} |
| 193 |
|
|
|
| 194 |
|
|
setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), |
| 195 |
|
|
exp(-ray -> rot * ray -> cext [1]), |
| 196 |
|
|
exp(-ray -> rot * ray -> cext [2])); |
| 197 |
|
|
|
| 198 |
|
|
/* Modify ray color and normalise */ |
| 199 |
|
|
multcolor(ray -> rcol, cvext); |
| 200 |
|
|
colorNorm(ray -> rcol); |
| 201 |
|
|
|
| 202 |
|
|
/* Passed through medium */ |
| 203 |
|
|
return 1; |
| 204 |
|
|
} |
| 205 |
|
|
|
| 206 |
|
|
|
| 207 |
|
|
|
| 208 |
|
|
void tracePhoton (RAY *ray) |
| 209 |
|
|
/* Follow photon as it bounces around... */ |
| 210 |
|
|
{ |
| 211 |
|
|
long mod; |
| 212 |
|
|
OBJREC* mat; |
| 213 |
|
|
|
| 214 |
|
|
if (ray -> rlvl > photonMaxBounce) { |
| 215 |
rschregle |
2.5 |
#ifdef PMAP_RUNAWAY_WARN |
| 216 |
greg |
2.1 |
error(WARNING, "runaway photon!"); |
| 217 |
rschregle |
2.5 |
#endif |
| 218 |
greg |
2.1 |
return; |
| 219 |
|
|
} |
| 220 |
rschregle |
2.5 |
|
| 221 |
greg |
2.1 |
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
| 222 |
|
|
return; |
| 223 |
|
|
|
| 224 |
|
|
if (localhit(ray, &thescene)) { |
| 225 |
|
|
mod = ray -> ro -> omod; |
| 226 |
|
|
|
| 227 |
|
|
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
| 228 |
|
|
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
| 229 |
|
|
RAY tray; |
| 230 |
|
|
photonRay(ray, &tray, PMAP_XFER, NULL); |
| 231 |
|
|
tracePhoton(&tray); |
| 232 |
|
|
} |
| 233 |
|
|
else { |
| 234 |
|
|
/* Scatter for modifier material */ |
| 235 |
|
|
mat = objptr(mod); |
| 236 |
|
|
photonScatter [mat -> otype] (mat, ray); |
| 237 |
|
|
} |
| 238 |
|
|
} |
| 239 |
|
|
} |
| 240 |
|
|
|
| 241 |
|
|
|
| 242 |
|
|
|
| 243 |
|
|
static void preComputeGlobal (PhotonMap *pmap) |
| 244 |
rschregle |
2.11 |
/* Precompute irradiance from global photons for final gathering for |
| 245 |
|
|
a random subset of finalGather * pmap -> numPhotons photons, and builds |
| 246 |
|
|
the photon map, discarding the original photons. */ |
| 247 |
|
|
/* !!! NOTE: PRECOMPUTATION WITH OOC CURRENTLY WITHOUT CACHE !!! */ |
| 248 |
|
|
{ |
| 249 |
|
|
unsigned long i, numPreComp; |
| 250 |
|
|
unsigned j; |
| 251 |
|
|
PhotonIdx pIdx; |
| 252 |
|
|
Photon photon; |
| 253 |
|
|
RAY ray; |
| 254 |
|
|
PhotonMap nuPmap; |
| 255 |
greg |
2.1 |
|
| 256 |
rschregle |
2.11 |
repComplete = numPreComp = finalGather * pmap -> numPhotons; |
| 257 |
greg |
2.1 |
|
| 258 |
|
|
if (photonRepTime) { |
| 259 |
rschregle |
2.11 |
sprintf(errmsg, "Precomputing irradiance for %ld global photons...\n", |
| 260 |
|
|
numPreComp); |
| 261 |
greg |
2.1 |
eputs(errmsg); |
| 262 |
|
|
fflush(stderr); |
| 263 |
|
|
} |
| 264 |
|
|
|
| 265 |
rschregle |
2.11 |
/* Copy photon map for precomputed photons */ |
| 266 |
|
|
memcpy(&nuPmap, pmap, sizeof(PhotonMap)); |
| 267 |
|
|
|
| 268 |
|
|
/* Zero counters, init new heap and extents */ |
| 269 |
|
|
nuPmap.numPhotons = 0; |
| 270 |
|
|
initPhotonHeap(&nuPmap); |
| 271 |
|
|
|
| 272 |
|
|
for (j = 0; j < 3; j++) { |
| 273 |
|
|
nuPmap.minPos [j] = FHUGE; |
| 274 |
|
|
nuPmap.maxPos [j] = -FHUGE; |
| 275 |
greg |
2.1 |
} |
| 276 |
rschregle |
2.11 |
|
| 277 |
greg |
2.1 |
/* Record start time, baby */ |
| 278 |
|
|
repStartTime = time(NULL); |
| 279 |
rschregle |
2.11 |
#ifdef SIGCONT |
| 280 |
|
|
signal(SIGCONT, pmapPreCompReport); |
| 281 |
|
|
#endif |
| 282 |
greg |
2.1 |
repProgress = 0; |
| 283 |
|
|
|
| 284 |
rschregle |
2.11 |
photonRay(NULL, &ray, PRIMARY, NULL); |
| 285 |
|
|
ray.ro = NULL; |
| 286 |
|
|
|
| 287 |
|
|
for (i = 0; i < numPreComp; i++) { |
| 288 |
|
|
/* Get random photon from stratified distribution in source heap to |
| 289 |
|
|
* avoid duplicates and clutering */ |
| 290 |
|
|
pIdx = firstPhoton(pmap) + |
| 291 |
|
|
(unsigned long)((i + pmapRandom(pmap -> randState)) / |
| 292 |
|
|
finalGather); |
| 293 |
|
|
getPhoton(pmap, pIdx, &photon); |
| 294 |
|
|
|
| 295 |
|
|
/* Init dummy photon ray with intersection at photon position */ |
| 296 |
|
|
VCOPY(ray.rop, photon.pos); |
| 297 |
|
|
for (j = 0; j < 3; j++) |
| 298 |
|
|
ray.ron [j] = photon.norm [j] / 127.0; |
| 299 |
|
|
|
| 300 |
|
|
/* Get density estimate at photon position */ |
| 301 |
|
|
photonDensity(pmap, &ray, ray.rcol); |
| 302 |
|
|
|
| 303 |
|
|
/* Append photon to new heap from ray */ |
| 304 |
|
|
newPhoton(&nuPmap, &ray); |
| 305 |
greg |
2.1 |
|
| 306 |
rschregle |
2.11 |
/* Update progress */ |
| 307 |
greg |
2.1 |
repProgress++; |
| 308 |
|
|
|
| 309 |
|
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
| 310 |
|
|
pmapPreCompReport(); |
| 311 |
rschregle |
2.11 |
#ifdef SIGCONT |
| 312 |
|
|
else signal(SIGCONT, pmapPreCompReport); |
| 313 |
|
|
#endif |
| 314 |
greg |
2.1 |
} |
| 315 |
|
|
|
| 316 |
rschregle |
2.11 |
/* Flush heap */ |
| 317 |
|
|
flushPhotonHeap(&nuPmap); |
| 318 |
|
|
|
| 319 |
|
|
#ifdef SIGCONT |
| 320 |
|
|
signal(SIGCONT, SIG_DFL); |
| 321 |
|
|
#endif |
| 322 |
|
|
|
| 323 |
|
|
/* Trash original pmap, replace with precomputed one */ |
| 324 |
|
|
deletePhotons(pmap); |
| 325 |
|
|
memcpy(pmap, &nuPmap, sizeof(PhotonMap)); |
| 326 |
greg |
2.1 |
|
| 327 |
|
|
if (photonRepTime) { |
| 328 |
rschregle |
2.11 |
eputs("Rebuilding precomputed photon map...\n"); |
| 329 |
greg |
2.1 |
fflush(stderr); |
| 330 |
|
|
} |
| 331 |
rschregle |
2.11 |
|
| 332 |
|
|
/* Rebuild underlying data structure, destroying heap */ |
| 333 |
|
|
buildPhotonMap(pmap, NULL, NULL, 1); |
| 334 |
greg |
2.1 |
} |
| 335 |
|
|
|
| 336 |
|
|
|
| 337 |
|
|
|
| 338 |
rschregle |
2.11 |
typedef struct { |
| 339 |
|
|
unsigned long numPhotons [NUM_PMAP_TYPES], |
| 340 |
|
|
numEmitted, numComplete; |
| 341 |
|
|
} PhotonCnt; |
| 342 |
|
|
|
| 343 |
|
|
|
| 344 |
|
|
|
| 345 |
|
|
void distribPhotons (PhotonMap **pmaps, unsigned numProc) |
| 346 |
|
|
{ |
| 347 |
|
|
EmissionMap emap; |
| 348 |
|
|
char errmsg2 [128], shmFname [255]; |
| 349 |
|
|
unsigned t, srcIdx, proc; |
| 350 |
|
|
double totalFlux = 0; |
| 351 |
|
|
int shmFile, stat, pid; |
| 352 |
|
|
PhotonMap *pm; |
| 353 |
|
|
PhotonCnt *photonCnt; |
| 354 |
greg |
2.1 |
|
| 355 |
rschregle |
2.8 |
for (t = 0; t < NUM_PMAP_TYPES && !pmaps [t]; t++); |
| 356 |
rschregle |
2.11 |
|
| 357 |
greg |
2.1 |
if (t >= NUM_PMAP_TYPES) |
| 358 |
rschregle |
2.11 |
error(USER, "no photon maps defined in distribPhotons"); |
| 359 |
greg |
2.1 |
|
| 360 |
|
|
if (!nsources) |
| 361 |
rschregle |
2.11 |
error(USER, "no light sources in distribPhotons"); |
| 362 |
greg |
2.1 |
|
| 363 |
|
|
/* =================================================================== |
| 364 |
|
|
* INITIALISATION - Set up emission and scattering funcs |
| 365 |
|
|
* =================================================================== */ |
| 366 |
|
|
emap.samples = NULL; |
| 367 |
|
|
emap.maxPartitions = MAXSPART; |
| 368 |
|
|
emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); |
| 369 |
|
|
if (!emap.partitions) |
| 370 |
rschregle |
2.11 |
error(INTERNAL, "can't allocate source partitions in distribPhotons"); |
| 371 |
greg |
2.1 |
|
| 372 |
|
|
/* Initialise all defined photon maps */ |
| 373 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 374 |
rschregle |
2.11 |
if (pmaps [t]) { |
| 375 |
|
|
initPhotonMap(pmaps [t], t); |
| 376 |
|
|
/* Open photon heapfile */ |
| 377 |
|
|
initPhotonHeap(pmaps [t]); |
| 378 |
|
|
/* Per-subprocess target count */ |
| 379 |
|
|
pmaps [t] -> distribTarget /= numProc; |
| 380 |
|
|
} |
| 381 |
greg |
2.1 |
|
| 382 |
|
|
initPhotonEmissionFuncs(); |
| 383 |
|
|
initPhotonScatterFuncs(); |
| 384 |
|
|
|
| 385 |
|
|
/* Get photon ports if specified */ |
| 386 |
|
|
if (ambincl == 1) |
| 387 |
|
|
getPhotonPorts(); |
| 388 |
|
|
|
| 389 |
|
|
/* Get photon sensor modifiers */ |
| 390 |
|
|
getPhotonSensors(photonSensorList); |
| 391 |
|
|
|
| 392 |
rschregle |
2.11 |
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
| 393 |
|
|
#if 0 |
| 394 |
|
|
snprintf(shmFname, 255, PMAP_SHMFNAME, getpid()); |
| 395 |
|
|
shmFile = shm_open(shmFname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); |
| 396 |
|
|
#else |
| 397 |
|
|
strcpy(shmFname, PMAP_SHMFNAME); |
| 398 |
|
|
shmFile = mkstemp(shmFname); |
| 399 |
|
|
#endif |
| 400 |
|
|
|
| 401 |
|
|
if (shmFile < 0) |
| 402 |
|
|
error(SYSTEM, "failed opening shared memory file in distribPhotons"); |
| 403 |
|
|
|
| 404 |
|
|
if (ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
| 405 |
|
|
error(SYSTEM, "failed setting shared memory size in distribPhotons"); |
| 406 |
|
|
|
| 407 |
|
|
photonCnt = mmap(NULL, sizeof(*photonCnt), PROT_READ | PROT_WRITE, |
| 408 |
|
|
MAP_SHARED, shmFile, 0); |
| 409 |
|
|
|
| 410 |
|
|
if (photonCnt == MAP_FAILED) |
| 411 |
|
|
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
| 412 |
|
|
|
| 413 |
greg |
2.1 |
if (photonRepTime) |
| 414 |
|
|
eputs("\n"); |
| 415 |
|
|
|
| 416 |
|
|
/* =================================================================== |
| 417 |
|
|
* FLUX INTEGRATION - Get total photon flux from light sources |
| 418 |
|
|
* =================================================================== */ |
| 419 |
rschregle |
2.11 |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
| 420 |
greg |
2.1 |
unsigned portCnt = 0; |
| 421 |
|
|
emap.src = source + srcIdx; |
| 422 |
|
|
|
| 423 |
rschregle |
2.11 |
do { /* Need at least one iteration if no ports! */ |
| 424 |
greg |
2.1 |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
| 425 |
|
|
: NULL; |
| 426 |
|
|
photonPartition [emap.src -> so -> otype] (&emap); |
| 427 |
|
|
|
| 428 |
|
|
if (photonRepTime) { |
| 429 |
|
|
sprintf(errmsg, "Integrating flux from source %s ", |
| 430 |
|
|
source [srcIdx].so -> oname); |
| 431 |
|
|
|
| 432 |
|
|
if (emap.port) { |
| 433 |
|
|
sprintf(errmsg2, "via port %s ", |
| 434 |
|
|
photonPorts [portCnt].so -> oname); |
| 435 |
|
|
strcat(errmsg, errmsg2); |
| 436 |
|
|
} |
| 437 |
|
|
|
| 438 |
|
|
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
| 439 |
|
|
strcat(errmsg, errmsg2); |
| 440 |
|
|
eputs(errmsg); |
| 441 |
|
|
fflush(stderr); |
| 442 |
|
|
} |
| 443 |
|
|
|
| 444 |
|
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
| 445 |
|
|
emap.partitionCnt++) { |
| 446 |
|
|
initPhotonEmission(&emap, pdfSamples); |
| 447 |
|
|
totalFlux += colorAvg(emap.partFlux); |
| 448 |
|
|
} |
| 449 |
|
|
|
| 450 |
|
|
portCnt++; |
| 451 |
|
|
} while (portCnt < numPhotonPorts); |
| 452 |
|
|
} |
| 453 |
|
|
|
| 454 |
|
|
if (totalFlux < FTINY) |
| 455 |
|
|
error(USER, "zero flux from light sources"); |
| 456 |
|
|
|
| 457 |
rschregle |
2.11 |
/* MAIN LOOP */ |
| 458 |
|
|
for (proc = 0; proc < numProc; proc++) { |
| 459 |
|
|
if (!(pid = fork())) { |
| 460 |
|
|
/* SUBPROCESS ENTERS HERE. |
| 461 |
|
|
All opened and memory mapped files are inherited */ |
| 462 |
|
|
unsigned passCnt = 0, prePassCnt = 0; |
| 463 |
|
|
unsigned long lastNumPhotons [NUM_PMAP_TYPES]; |
| 464 |
|
|
unsigned long localNumEmitted = 0; /* Num photons emitted by this |
| 465 |
|
|
subprocess alone */ |
| 466 |
greg |
2.1 |
|
| 467 |
rschregle |
2.11 |
/* Seed RNGs from PID for decorellated photon distribution */ |
| 468 |
|
|
pmapSeed(randSeed + proc, partState); |
| 469 |
|
|
pmapSeed(randSeed + proc, emitState); |
| 470 |
|
|
pmapSeed(randSeed + proc, cntState); |
| 471 |
|
|
pmapSeed(randSeed + proc, mediumState); |
| 472 |
|
|
pmapSeed(randSeed + proc, scatterState); |
| 473 |
|
|
pmapSeed(randSeed + proc, rouletteState); |
| 474 |
greg |
2.1 |
|
| 475 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 476 |
rschregle |
2.11 |
lastNumPhotons [t] = 0; |
| 477 |
|
|
|
| 478 |
|
|
/* ============================================================= |
| 479 |
|
|
* 2-PASS PHOTON DISTRIBUTION |
| 480 |
|
|
* Pass 1 (pre): emit fraction of target photon count |
| 481 |
|
|
* Pass 2 (main): based on outcome of pass 1, estimate remaining |
| 482 |
|
|
* number of photons to emit to approximate target |
| 483 |
|
|
* count |
| 484 |
|
|
* ============================================================= */ |
| 485 |
greg |
2.1 |
do { |
| 486 |
rschregle |
2.11 |
double numEmit; |
| 487 |
greg |
2.1 |
|
| 488 |
rschregle |
2.11 |
if (!passCnt) { |
| 489 |
|
|
/* INIT PASS 1 */ |
| 490 |
|
|
/* Skip if no photons contributed after sufficient |
| 491 |
|
|
* iterations; make it clear to user which photon maps are |
| 492 |
|
|
* missing so (s)he can check geometry and materials */ |
| 493 |
|
|
if (++prePassCnt > maxPreDistrib) { |
| 494 |
|
|
sprintf(errmsg, |
| 495 |
|
|
"proc %d, source %s: too many prepasses", |
| 496 |
|
|
proc, source [srcIdx].so -> oname); |
| 497 |
|
|
|
| 498 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 499 |
|
|
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
| 500 |
|
|
sprintf(errmsg2, ", no %s photons stored", |
| 501 |
|
|
pmapName [t]); |
| 502 |
|
|
strcat(errmsg, errmsg2); |
| 503 |
|
|
} |
| 504 |
|
|
|
| 505 |
|
|
error(USER, errmsg); |
| 506 |
|
|
break; |
| 507 |
greg |
2.1 |
} |
| 508 |
rschregle |
2.11 |
|
| 509 |
|
|
/* Num to emit is fraction of minimum target count */ |
| 510 |
|
|
numEmit = FHUGE; |
| 511 |
greg |
2.1 |
|
| 512 |
rschregle |
2.11 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 513 |
|
|
if (pmaps [t]) |
| 514 |
|
|
numEmit = min(pmaps [t] -> distribTarget, numEmit); |
| 515 |
|
|
|
| 516 |
|
|
numEmit *= preDistrib; |
| 517 |
greg |
2.1 |
} |
| 518 |
rschregle |
2.11 |
else { |
| 519 |
|
|
/* INIT PASS 2 */ |
| 520 |
|
|
/* Based on the outcome of the predistribution we can now |
| 521 |
|
|
* estimate how many more photons we have to emit for each |
| 522 |
|
|
* photon map to meet its respective target count. This |
| 523 |
|
|
* value is clamped to 0 in case the target has already been |
| 524 |
|
|
* exceeded in the pass 1. */ |
| 525 |
|
|
double maxDistribRatio = 0; |
| 526 |
|
|
|
| 527 |
|
|
/* Set the distribution ratio for each map; this indicates |
| 528 |
|
|
* how many photons of each respective type are stored per |
| 529 |
|
|
* emitted photon, and is used as probability for storing a |
| 530 |
|
|
* photon by newPhoton(). Since this biases the photon |
| 531 |
|
|
* density, newPhoton() promotes the flux of stored photons |
| 532 |
|
|
* to compensate. */ |
| 533 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 534 |
|
|
if ((pm = pmaps [t])) { |
| 535 |
|
|
pm -> distribRatio = (double)pm -> distribTarget / |
| 536 |
|
|
pm -> numPhotons - 1; |
| 537 |
|
|
|
| 538 |
|
|
/* Check if photon map "overflowed", i.e. exceeded its |
| 539 |
|
|
* target count in the prepass; correcting the photon |
| 540 |
|
|
* flux via the distribution ratio is no longer |
| 541 |
|
|
* possible, as no more photons of this type will be |
| 542 |
|
|
* stored, so notify the user rather than deliver |
| 543 |
|
|
* incorrect results. In future we should handle this |
| 544 |
|
|
* more intelligently by using the photonFlux in each |
| 545 |
|
|
* photon map to individually correct the flux after |
| 546 |
|
|
* distribution. */ |
| 547 |
|
|
if (pm -> distribRatio <= FTINY) { |
| 548 |
|
|
sprintf(errmsg, "%s photon map overflow in " |
| 549 |
|
|
"prepass, reduce -apD", pmapName [t]); |
| 550 |
|
|
error(INTERNAL, errmsg); |
| 551 |
|
|
} |
| 552 |
|
|
|
| 553 |
|
|
maxDistribRatio = max(pm -> distribRatio, |
| 554 |
|
|
maxDistribRatio); |
| 555 |
|
|
} |
| 556 |
greg |
2.1 |
|
| 557 |
rschregle |
2.11 |
/* Normalise distribution ratios and calculate number of |
| 558 |
|
|
* photons to emit in main pass */ |
| 559 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 560 |
|
|
if ((pm = pmaps [t])) |
| 561 |
|
|
pm -> distribRatio /= maxDistribRatio; |
| 562 |
|
|
|
| 563 |
|
|
if ((numEmit = localNumEmitted * maxDistribRatio) < FTINY) |
| 564 |
|
|
/* No photons left to distribute in main pass */ |
| 565 |
|
|
break; |
| 566 |
|
|
} |
| 567 |
|
|
|
| 568 |
|
|
/* Update shared completion counter for prog.report by parent */ |
| 569 |
|
|
photonCnt -> numComplete += numEmit; |
| 570 |
|
|
|
| 571 |
|
|
/* PHOTON DISTRIBUTION LOOP */ |
| 572 |
|
|
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
| 573 |
|
|
unsigned portCnt = 0; |
| 574 |
|
|
emap.src = source + srcIdx; |
| 575 |
|
|
|
| 576 |
|
|
do { /* Need at least one iteration if no ports! */ |
| 577 |
|
|
emap.port = emap.src -> sflags & SDISTANT |
| 578 |
|
|
? photonPorts + portCnt : NULL; |
| 579 |
|
|
photonPartition [emap.src -> so -> otype] (&emap); |
| 580 |
|
|
|
| 581 |
|
|
if (photonRepTime && !proc) { |
| 582 |
|
|
if (!passCnt) |
| 583 |
|
|
sprintf(errmsg, "PREPASS %d on source %s ", |
| 584 |
|
|
prePassCnt, source [srcIdx].so -> oname); |
| 585 |
|
|
else |
| 586 |
|
|
sprintf(errmsg, "MAIN PASS on source %s ", |
| 587 |
|
|
source [srcIdx].so -> oname); |
| 588 |
|
|
|
| 589 |
|
|
if (emap.port) { |
| 590 |
|
|
sprintf(errmsg2, "via port %s ", |
| 591 |
|
|
photonPorts [portCnt].so -> oname); |
| 592 |
|
|
strcat(errmsg, errmsg2); |
| 593 |
|
|
} |
| 594 |
|
|
|
| 595 |
|
|
sprintf(errmsg2, "(%lu partitions)\n", |
| 596 |
|
|
emap.numPartitions); |
| 597 |
|
|
strcat(errmsg, errmsg2); |
| 598 |
|
|
eputs(errmsg); |
| 599 |
|
|
fflush(stderr); |
| 600 |
|
|
} |
| 601 |
greg |
2.1 |
|
| 602 |
rschregle |
2.11 |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
| 603 |
|
|
emap.partitionCnt++) { |
| 604 |
|
|
double partNumEmit; |
| 605 |
|
|
unsigned long partEmitCnt; |
| 606 |
|
|
|
| 607 |
|
|
/* Get photon origin within current source partishunn |
| 608 |
|
|
* and build emission map */ |
| 609 |
|
|
photonOrigin [emap.src -> so -> otype] (&emap); |
| 610 |
|
|
initPhotonEmission(&emap, pdfSamples); |
| 611 |
|
|
|
| 612 |
|
|
/* Number of photons to emit from ziss partishunn -- |
| 613 |
|
|
* proportional to flux; photon ray weight and scalar |
| 614 |
|
|
* flux are uniform (the latter only varying in RGB). |
| 615 |
|
|
* */ |
| 616 |
|
|
partNumEmit = numEmit * colorAvg(emap.partFlux) / |
| 617 |
|
|
totalFlux; |
| 618 |
|
|
partEmitCnt = (unsigned long)partNumEmit; |
| 619 |
|
|
|
| 620 |
|
|
/* Probabilistically account for fractional photons */ |
| 621 |
|
|
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
| 622 |
|
|
partEmitCnt++; |
| 623 |
|
|
|
| 624 |
|
|
/* Update local and shared (global) emission counter */ |
| 625 |
|
|
photonCnt -> numEmitted += partEmitCnt; |
| 626 |
|
|
localNumEmitted += partEmitCnt; |
| 627 |
|
|
|
| 628 |
|
|
/* Integer counter avoids FP rounding errors during |
| 629 |
|
|
* iteration */ |
| 630 |
|
|
while (partEmitCnt--) { |
| 631 |
|
|
RAY photonRay; |
| 632 |
|
|
|
| 633 |
|
|
/* Emit photon based on PDF and trace through scene |
| 634 |
|
|
* until absorbed/leaked */ |
| 635 |
|
|
emitPhoton(&emap, &photonRay); |
| 636 |
|
|
tracePhoton(&photonRay); |
| 637 |
|
|
} |
| 638 |
|
|
|
| 639 |
|
|
/* Update shared global photon count for each pmap */ |
| 640 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 641 |
|
|
if (pmaps [t]) { |
| 642 |
|
|
photonCnt -> numPhotons [t] += |
| 643 |
|
|
pmaps [t] -> numPhotons - lastNumPhotons [t]; |
| 644 |
|
|
lastNumPhotons [t] = pmaps [t] -> numPhotons; |
| 645 |
|
|
} |
| 646 |
|
|
} |
| 647 |
greg |
2.1 |
|
| 648 |
rschregle |
2.11 |
portCnt++; |
| 649 |
|
|
} while (portCnt < numPhotonPorts); |
| 650 |
|
|
} |
| 651 |
|
|
|
| 652 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 653 |
|
|
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
| 654 |
|
|
/* Double preDistrib in case a photon map is empty and |
| 655 |
|
|
* redo pass 1 --> possibility of infinite loop for |
| 656 |
|
|
* pathological scenes (e.g. absorbing materials) */ |
| 657 |
|
|
preDistrib *= 2; |
| 658 |
|
|
break; |
| 659 |
greg |
2.1 |
} |
| 660 |
rschregle |
2.11 |
|
| 661 |
|
|
if (t >= NUM_PMAP_TYPES) { |
| 662 |
|
|
/* No empty photon maps found; now do pass 2 */ |
| 663 |
|
|
passCnt++; |
| 664 |
|
|
#if 0 |
| 665 |
|
|
if (photonRepTime) |
| 666 |
|
|
eputs("\n"); |
| 667 |
|
|
#endif |
| 668 |
greg |
2.1 |
} |
| 669 |
rschregle |
2.11 |
} while (passCnt < 2); |
| 670 |
|
|
|
| 671 |
|
|
/* Unmap shared photon counters */ |
| 672 |
|
|
#if 0 |
| 673 |
|
|
munmap(photonCnt, sizeof(*photonCnt)); |
| 674 |
|
|
close(shmFile); |
| 675 |
|
|
#endif |
| 676 |
|
|
|
| 677 |
|
|
/* Flush heap buffa for every pmap one final time; this is required |
| 678 |
|
|
* to prevent data corruption! */ |
| 679 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 680 |
|
|
if (pmaps [t]) { |
| 681 |
|
|
#if 0 |
| 682 |
|
|
eputs("Final flush\n"); |
| 683 |
|
|
#endif |
| 684 |
|
|
flushPhotonHeap(pmaps [t]); |
| 685 |
|
|
fclose(pmaps [t] -> heap); |
| 686 |
|
|
#ifdef DEBUG_PMAP |
| 687 |
|
|
sprintf(errmsg, "Proc %d: total %ld photons\n", getpid(), |
| 688 |
|
|
pmaps [t] -> numPhotons); |
| 689 |
|
|
eputs(errmsg); |
| 690 |
|
|
#endif |
| 691 |
|
|
} |
| 692 |
|
|
|
| 693 |
|
|
exit(0); |
| 694 |
greg |
2.1 |
} |
| 695 |
rschregle |
2.11 |
else if (pid < 0) |
| 696 |
|
|
error(SYSTEM, "failed to fork subprocess in distribPhotons"); |
| 697 |
|
|
} |
| 698 |
|
|
|
| 699 |
|
|
/* PARENT PROCESS CONTINUES HERE */ |
| 700 |
|
|
/* Record start time and enable progress report signal handler */ |
| 701 |
|
|
repStartTime = time(NULL); |
| 702 |
|
|
#ifdef SIGCONT |
| 703 |
|
|
signal(SIGCONT, pmapDistribReport); |
| 704 |
|
|
#endif |
| 705 |
|
|
|
| 706 |
|
|
if (photonRepTime) |
| 707 |
|
|
eputs("\n"); |
| 708 |
|
|
|
| 709 |
|
|
/* Wait for subprocesses to complete while reporting progress */ |
| 710 |
|
|
proc = numProc; |
| 711 |
|
|
while (proc) { |
| 712 |
|
|
while (waitpid(-1, &stat, WNOHANG) > 0) { |
| 713 |
|
|
/* Subprocess exited; check status */ |
| 714 |
|
|
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) |
| 715 |
|
|
error(USER, "failed photon distribution"); |
| 716 |
|
|
|
| 717 |
|
|
--proc; |
| 718 |
|
|
} |
| 719 |
|
|
|
| 720 |
|
|
/* Nod off for a bit and update progress */ |
| 721 |
|
|
sleep(1); |
| 722 |
|
|
/* Update progress report from shared subprocess counters */ |
| 723 |
|
|
repEmitted = repProgress = photonCnt -> numEmitted; |
| 724 |
|
|
repComplete = photonCnt -> numComplete; |
| 725 |
|
|
|
| 726 |
greg |
2.1 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 727 |
rschregle |
2.11 |
if ((pm = pmaps [t])) { |
| 728 |
|
|
#if 0 |
| 729 |
|
|
/* Get photon count from heapfile size for progress update */ |
| 730 |
|
|
fseek(pm -> heap, 0, SEEK_END); |
| 731 |
|
|
pm -> numPhotons = ftell(pm -> heap) / sizeof(Photon); */ |
| 732 |
|
|
#else |
| 733 |
|
|
/* Get global photon count from shmem updated by subprocs */ |
| 734 |
|
|
pm -> numPhotons = photonCnt -> numPhotons [t]; |
| 735 |
|
|
#endif |
| 736 |
greg |
2.1 |
} |
| 737 |
rschregle |
2.11 |
|
| 738 |
|
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
| 739 |
|
|
pmapDistribReport(); |
| 740 |
|
|
#ifdef SIGCONT |
| 741 |
|
|
else signal(SIGCONT, pmapDistribReport); |
| 742 |
|
|
#endif |
| 743 |
|
|
} |
| 744 |
greg |
2.1 |
|
| 745 |
|
|
/* =================================================================== |
| 746 |
rschregle |
2.11 |
* POST-DISTRIBUTION - Set photon flux and build data struct for photon |
| 747 |
|
|
* storage, etc. |
| 748 |
greg |
2.1 |
* =================================================================== */ |
| 749 |
rschregle |
2.11 |
#ifdef SIGCONT |
| 750 |
|
|
signal(SIGCONT, SIG_DFL); |
| 751 |
|
|
#endif |
| 752 |
greg |
2.1 |
free(emap.samples); |
| 753 |
|
|
|
| 754 |
|
|
/* Set photon flux (repProgress is total num emitted) */ |
| 755 |
rschregle |
2.11 |
totalFlux /= photonCnt -> numEmitted; |
| 756 |
|
|
|
| 757 |
|
|
/* Photon counters no longer needed, unmap shared memory */ |
| 758 |
|
|
munmap(photonCnt, sizeof(*photonCnt)); |
| 759 |
|
|
close(shmFile); |
| 760 |
|
|
#if 0 |
| 761 |
|
|
shm_unlink(shmFname); |
| 762 |
|
|
#else |
| 763 |
|
|
unlink(shmFname); |
| 764 |
|
|
#endif |
| 765 |
greg |
2.1 |
|
| 766 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
| 767 |
rschregle |
2.8 |
if (pmaps [t]) { |
| 768 |
greg |
2.1 |
if (photonRepTime) { |
| 769 |
|
|
sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); |
| 770 |
|
|
eputs(errmsg); |
| 771 |
|
|
fflush(stderr); |
| 772 |
|
|
} |
| 773 |
rschregle |
2.11 |
|
| 774 |
|
|
/* Build underlying data structure; heap is destroyed */ |
| 775 |
|
|
buildPhotonMap(pmaps [t], &totalFlux, NULL, numProc); |
| 776 |
greg |
2.1 |
} |
| 777 |
rschregle |
2.11 |
|
| 778 |
greg |
2.1 |
/* Precompute photon irradiance if necessary */ |
| 779 |
|
|
if (preCompPmap) |
| 780 |
|
|
preComputeGlobal(preCompPmap); |
| 781 |
|
|
} |
| 782 |
|
|
|
| 783 |
|
|
|
| 784 |
|
|
|
| 785 |
|
|
void photonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
| 786 |
|
|
/* Photon density estimate. Returns irradiance at ray -> rop. */ |
| 787 |
|
|
{ |
| 788 |
rschregle |
2.11 |
unsigned i; |
| 789 |
|
|
float r; |
| 790 |
|
|
COLOR flux; |
| 791 |
|
|
Photon *photon; |
| 792 |
|
|
const PhotonSearchQueueNode *sqn; |
| 793 |
greg |
2.1 |
|
| 794 |
|
|
setcolor(irrad, 0, 0, 0); |
| 795 |
|
|
|
| 796 |
|
|
if (!pmap -> maxGather) |
| 797 |
|
|
return; |
| 798 |
|
|
|
| 799 |
|
|
/* Ignore sources */ |
| 800 |
rschregle |
2.11 |
if (ray -> ro && islight(objptr(ray -> ro -> omod) -> otype)) |
| 801 |
|
|
return; |
| 802 |
greg |
2.1 |
|
| 803 |
|
|
findPhotons(pmap, ray); |
| 804 |
|
|
|
| 805 |
|
|
/* Need at least 2 photons */ |
| 806 |
rschregle |
2.11 |
if (pmap -> squeue.tail < 2) { |
| 807 |
|
|
#ifdef PMAP_NONEFOUND |
| 808 |
|
|
sprintf(errmsg, "no photons found on %s at (%.3f, %.3f, %.3f)", |
| 809 |
|
|
ray -> ro ? ray -> ro -> oname : "<null>", |
| 810 |
|
|
ray -> rop [0], ray -> rop [1], ray -> rop [2]); |
| 811 |
|
|
error(WARNING, errmsg); |
| 812 |
|
|
#endif |
| 813 |
greg |
2.1 |
|
| 814 |
|
|
return; |
| 815 |
|
|
} |
| 816 |
rschregle |
2.11 |
|
| 817 |
greg |
2.1 |
if (pmap -> minGather == pmap -> maxGather) { |
| 818 |
|
|
/* No bias compensation. Just do a plain vanilla estimate */ |
| 819 |
rschregle |
2.11 |
sqn = pmap -> squeue.node + 1; |
| 820 |
greg |
2.1 |
|
| 821 |
|
|
/* Average radius between furthest two photons to improve accuracy */ |
| 822 |
rschregle |
2.11 |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 823 |
|
|
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
| 824 |
greg |
2.1 |
|
| 825 |
|
|
/* Skip the extra photon */ |
| 826 |
rschregle |
2.11 |
for (i = 1 ; i < pmap -> squeue.tail; i++, sqn++) { |
| 827 |
|
|
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); |
| 828 |
|
|
getPhotonFlux(photon, flux); |
| 829 |
greg |
2.1 |
#ifdef PMAP_EPANECHNIKOV |
| 830 |
rschregle |
2.11 |
/* Apply Epanechnikov kernel to photon flux based on photon dist */ |
| 831 |
|
|
scalecolor(flux, 2 * (1 - sqn -> dist2 / r)); |
| 832 |
|
|
#endif |
| 833 |
greg |
2.1 |
addcolor(irrad, flux); |
| 834 |
|
|
} |
| 835 |
|
|
|
| 836 |
|
|
/* Divide by search area PI * r^2, 1 / PI required as ambient |
| 837 |
|
|
normalisation factor */ |
| 838 |
|
|
scalecolor(irrad, 1 / (PI * PI * r)); |
| 839 |
|
|
|
| 840 |
|
|
return; |
| 841 |
|
|
} |
| 842 |
|
|
else |
| 843 |
|
|
/* Apply bias compensation to density estimate */ |
| 844 |
|
|
biasComp(pmap, irrad); |
| 845 |
|
|
} |
| 846 |
|
|
|
| 847 |
|
|
|
| 848 |
|
|
|
| 849 |
|
|
void photonPreCompDensity (PhotonMap *pmap, RAY *r, COLOR irrad) |
| 850 |
|
|
/* Returns precomputed photon density estimate at ray -> rop. */ |
| 851 |
|
|
{ |
| 852 |
rschregle |
2.11 |
Photon p; |
| 853 |
greg |
2.1 |
|
| 854 |
|
|
setcolor(irrad, 0, 0, 0); |
| 855 |
|
|
|
| 856 |
|
|
/* Ignore sources */ |
| 857 |
|
|
if (r -> ro && islight(objptr(r -> ro -> omod) -> otype)) |
| 858 |
|
|
return; |
| 859 |
|
|
|
| 860 |
rschregle |
2.11 |
find1Photon(preCompPmap, r, &p); |
| 861 |
|
|
getPhotonFlux(&p, irrad); |
| 862 |
greg |
2.1 |
} |
| 863 |
|
|
|
| 864 |
|
|
|
| 865 |
|
|
|
| 866 |
|
|
void volumePhotonDensity (PhotonMap *pmap, RAY *ray, COLOR irrad) |
| 867 |
|
|
/* Photon volume density estimate. Returns irradiance at ray -> rop. */ |
| 868 |
|
|
{ |
| 869 |
rschregle |
2.11 |
unsigned i; |
| 870 |
|
|
float r, gecc2, ph; |
| 871 |
|
|
COLOR flux; |
| 872 |
|
|
Photon *photon; |
| 873 |
|
|
const PhotonSearchQueueNode *sqn; |
| 874 |
greg |
2.1 |
|
| 875 |
|
|
setcolor(irrad, 0, 0, 0); |
| 876 |
|
|
|
| 877 |
|
|
if (!pmap -> maxGather) |
| 878 |
|
|
return; |
| 879 |
|
|
|
| 880 |
|
|
findPhotons(pmap, ray); |
| 881 |
|
|
|
| 882 |
|
|
/* Need at least 2 photons */ |
| 883 |
rschregle |
2.11 |
if (pmap -> squeue.tail < 2) |
| 884 |
greg |
2.1 |
return; |
| 885 |
rschregle |
2.11 |
|
| 886 |
|
|
#if 0 |
| 887 |
|
|
/* Volume biascomp disabled (probably redundant) */ |
| 888 |
|
|
if (pmap -> minGather == pmap -> maxGather) |
| 889 |
|
|
#endif |
| 890 |
|
|
{ |
| 891 |
greg |
2.1 |
/* No bias compensation. Just do a plain vanilla estimate */ |
| 892 |
|
|
gecc2 = ray -> gecc * ray -> gecc; |
| 893 |
rschregle |
2.11 |
sqn = pmap -> squeue.node + 1; |
| 894 |
greg |
2.1 |
|
| 895 |
|
|
/* Average radius between furthest two photons to improve accuracy */ |
| 896 |
rschregle |
2.11 |
r = max(sqn -> dist2, (sqn + 1) -> dist2); |
| 897 |
|
|
r = 0.25 * (pmap -> maxDist2 + r + 2 * sqrt(pmap -> maxDist2 * r)); |
| 898 |
greg |
2.1 |
|
| 899 |
|
|
/* Skip the extra photon */ |
| 900 |
rschregle |
2.11 |
for (i = 1; i < pmap -> squeue.tail; i++, sqn++) { |
| 901 |
|
|
photon = getNearestPhoton(&pmap -> squeue, sqn -> idx); |
| 902 |
|
|
|
| 903 |
greg |
2.1 |
/* Compute phase function for inscattering from photon */ |
| 904 |
|
|
if (gecc2 <= FTINY) |
| 905 |
|
|
ph = 1; |
| 906 |
|
|
else { |
| 907 |
rschregle |
2.11 |
ph = DOT(ray -> rdir, photon -> norm) / 127; |
| 908 |
greg |
2.1 |
ph = 1 + gecc2 - 2 * ray -> gecc * ph; |
| 909 |
|
|
ph = (1 - gecc2) / (ph * sqrt(ph)); |
| 910 |
|
|
} |
| 911 |
|
|
|
| 912 |
rschregle |
2.11 |
getPhotonFlux(photon, flux); |
| 913 |
greg |
2.1 |
scalecolor(flux, ph); |
| 914 |
|
|
addcolor(irrad, flux); |
| 915 |
|
|
} |
| 916 |
|
|
|
| 917 |
|
|
/* Divide by search volume 4 / 3 * PI * r^3 and phase function |
| 918 |
|
|
normalization factor 1 / (4 * PI) */ |
| 919 |
|
|
scalecolor(irrad, 3 / (16 * PI * PI * r * sqrt(r))); |
| 920 |
|
|
return; |
| 921 |
|
|
} |
| 922 |
rschregle |
2.11 |
#if 0 |
| 923 |
greg |
2.1 |
else |
| 924 |
|
|
/* Apply bias compensation to density estimate */ |
| 925 |
|
|
volumeBiasComp(pmap, ray, irrad); |
| 926 |
rschregle |
2.11 |
#endif |
| 927 |
greg |
2.1 |
} |