| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
greg |
2.79 |
static const char RCSid[] = "$Id: normal.c,v 2.78 2019/02/13 01:00:31 greg Exp $";
|
| 3 |
greg |
1.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* normal.c - shading function for normal materials.
|
| 6 |
|
|
*
|
| 7 |
|
|
* 8/19/85
|
| 8 |
|
|
* 12/19/85 - added stuff for metals.
|
| 9 |
|
|
* 6/26/87 - improved specular model.
|
| 10 |
|
|
* 9/28/87 - added model for translucent materials.
|
| 11 |
greg |
2.2 |
* Later changes described in delta comments.
|
| 12 |
greg |
1.1 |
*/
|
| 13 |
|
|
|
| 14 |
greg |
2.39 |
#include "copyright.h"
|
| 15 |
greg |
2.38 |
|
| 16 |
greg |
1.1 |
#include "ray.h"
|
| 17 |
greg |
2.46 |
#include "ambient.h"
|
| 18 |
schorsch |
2.47 |
#include "source.h"
|
| 19 |
greg |
1.1 |
#include "otypes.h"
|
| 20 |
schorsch |
2.47 |
#include "rtotypes.h"
|
| 21 |
greg |
2.2 |
#include "random.h"
|
| 22 |
greg |
2.69 |
#include "pmapmat.h"
|
| 23 |
greg |
2.2 |
|
| 24 |
greg |
2.34 |
#ifndef MAXITER
|
| 25 |
|
|
#define MAXITER 10 /* maximum # specular ray attempts */
|
| 26 |
|
|
#endif
|
| 27 |
greg |
2.38 |
/* estimate of Fresnel function */
|
| 28 |
greg |
2.44 |
#define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
|
| 29 |
greg |
2.51 |
#define FRESTHRESH 0.017999 /* minimum specularity for approx. */
|
| 30 |
greg |
2.34 |
|
| 31 |
greg |
2.24 |
|
| 32 |
greg |
1.1 |
/*
|
| 33 |
greg |
2.22 |
* This routine implements the isotropic Gaussian
|
| 34 |
|
|
* model described by Ward in Siggraph `92 article.
|
| 35 |
greg |
1.1 |
* We orient the surface towards the incoming ray, so a single
|
| 36 |
|
|
* surface can be used to represent an infinitely thin object.
|
| 37 |
|
|
*
|
| 38 |
|
|
* Arguments for MAT_PLASTIC and MAT_METAL are:
|
| 39 |
|
|
* red grn blu specular-frac. facet-slope
|
| 40 |
|
|
*
|
| 41 |
|
|
* Arguments for MAT_TRANS are:
|
| 42 |
|
|
* red grn blu rspec rough trans tspec
|
| 43 |
|
|
*/
|
| 44 |
|
|
|
| 45 |
greg |
2.2 |
/* specularity flags */
|
| 46 |
|
|
#define SP_REFL 01 /* has reflected specular component */
|
| 47 |
|
|
#define SP_TRAN 02 /* has transmitted specular */
|
| 48 |
greg |
2.11 |
#define SP_PURE 04 /* purely specular (zero roughness) */
|
| 49 |
|
|
#define SP_FLAT 010 /* flat reflecting surface */
|
| 50 |
|
|
#define SP_RBLT 020 /* reflection below sample threshold */
|
| 51 |
|
|
#define SP_TBLT 040 /* transmission below threshold */
|
| 52 |
greg |
1.1 |
|
| 53 |
greg |
1.3 |
typedef struct {
|
| 54 |
|
|
OBJREC *mp; /* material pointer */
|
| 55 |
greg |
2.16 |
RAY *rp; /* ray pointer */
|
| 56 |
greg |
2.2 |
short specfl; /* specularity flags, defined above */
|
| 57 |
greg |
1.1 |
COLOR mcolor; /* color of this material */
|
| 58 |
|
|
COLOR scolor; /* color of specular component */
|
| 59 |
|
|
FVECT vrefl; /* vector in direction of reflected ray */
|
| 60 |
greg |
1.14 |
FVECT prdir; /* vector in transmitted direction */
|
| 61 |
greg |
2.2 |
double alpha2; /* roughness squared */
|
| 62 |
greg |
1.1 |
double rdiff, rspec; /* reflected specular, diffuse */
|
| 63 |
|
|
double trans; /* transmissivity */
|
| 64 |
|
|
double tdiff, tspec; /* transmitted specular, diffuse */
|
| 65 |
|
|
FVECT pnorm; /* perturbed surface normal */
|
| 66 |
|
|
double pdot; /* perturbed dot product */
|
| 67 |
greg |
1.3 |
} NORMDAT; /* normal material data */
|
| 68 |
|
|
|
| 69 |
greg |
2.63 |
static void gaussamp(NORMDAT *np);
|
| 70 |
schorsch |
2.47 |
|
| 71 |
greg |
1.3 |
|
| 72 |
greg |
2.38 |
static void
|
| 73 |
schorsch |
2.47 |
dirnorm( /* compute source contribution */
|
| 74 |
|
|
COLOR cval, /* returned coefficient */
|
| 75 |
greg |
2.62 |
void *nnp, /* material data */
|
| 76 |
schorsch |
2.47 |
FVECT ldir, /* light source direction */
|
| 77 |
|
|
double omega /* light source size */
|
| 78 |
|
|
)
|
| 79 |
greg |
1.3 |
{
|
| 80 |
greg |
2.62 |
NORMDAT *np = nnp;
|
| 81 |
greg |
1.1 |
double ldot;
|
| 82 |
greg |
2.49 |
double lrdiff, ltdiff;
|
| 83 |
greg |
2.54 |
double dtmp, d2, d3, d4;
|
| 84 |
greg |
2.16 |
FVECT vtmp;
|
| 85 |
greg |
1.3 |
COLOR ctmp;
|
| 86 |
|
|
|
| 87 |
|
|
setcolor(cval, 0.0, 0.0, 0.0);
|
| 88 |
|
|
|
| 89 |
|
|
ldot = DOT(np->pnorm, ldir);
|
| 90 |
|
|
|
| 91 |
|
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
|
| 92 |
|
|
return; /* wrong side */
|
| 93 |
|
|
|
| 94 |
greg |
2.38 |
/* Fresnel estimate */
|
| 95 |
greg |
2.49 |
lrdiff = np->rdiff;
|
| 96 |
|
|
ltdiff = np->tdiff;
|
| 97 |
greg |
2.51 |
if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
|
| 98 |
greg |
2.49 |
(lrdiff > FTINY) | (ltdiff > FTINY)) {
|
| 99 |
|
|
dtmp = 1. - FRESNE(fabs(ldot));
|
| 100 |
|
|
lrdiff *= dtmp;
|
| 101 |
|
|
ltdiff *= dtmp;
|
| 102 |
|
|
}
|
| 103 |
greg |
2.38 |
|
| 104 |
greg |
2.49 |
if (ldot > FTINY && lrdiff > FTINY) {
|
| 105 |
greg |
1.3 |
/*
|
| 106 |
greg |
1.4 |
* Compute and add diffuse reflected component to returned
|
| 107 |
|
|
* color. The diffuse reflected component will always be
|
| 108 |
|
|
* modified by the color of the material.
|
| 109 |
greg |
1.3 |
*/
|
| 110 |
|
|
copycolor(ctmp, np->mcolor);
|
| 111 |
greg |
2.49 |
dtmp = ldot * omega * lrdiff * (1.0/PI);
|
| 112 |
greg |
1.3 |
scalecolor(ctmp, dtmp);
|
| 113 |
|
|
addcolor(cval, ctmp);
|
| 114 |
|
|
}
|
| 115 |
greg |
2.72 |
|
| 116 |
greg |
2.69 |
if (ldot < -FTINY && ltdiff > FTINY) {
|
| 117 |
|
|
/*
|
| 118 |
|
|
* Compute diffuse transmission.
|
| 119 |
|
|
*/
|
| 120 |
|
|
copycolor(ctmp, np->mcolor);
|
| 121 |
|
|
dtmp = -ldot * omega * ltdiff * (1.0/PI);
|
| 122 |
|
|
scalecolor(ctmp, dtmp);
|
| 123 |
|
|
addcolor(cval, ctmp);
|
| 124 |
|
|
}
|
| 125 |
greg |
2.72 |
|
| 126 |
|
|
if (ambRayInPmap(np->rp))
|
| 127 |
|
|
return; /* specular already in photon map */
|
| 128 |
|
|
|
| 129 |
greg |
2.2 |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
|
| 130 |
greg |
1.3 |
/*
|
| 131 |
|
|
* Compute specular reflection coefficient using
|
| 132 |
greg |
2.54 |
* Gaussian distribution model.
|
| 133 |
greg |
1.3 |
*/
|
| 134 |
greg |
2.3 |
/* roughness */
|
| 135 |
greg |
2.16 |
dtmp = np->alpha2;
|
| 136 |
greg |
2.3 |
/* + source if flat */
|
| 137 |
|
|
if (np->specfl & SP_FLAT)
|
| 138 |
greg |
2.48 |
dtmp += omega * (0.25/PI);
|
| 139 |
greg |
2.23 |
/* half vector */
|
| 140 |
greg |
2.62 |
VSUB(vtmp, ldir, np->rp->rdir);
|
| 141 |
greg |
2.16 |
d2 = DOT(vtmp, np->pnorm);
|
| 142 |
greg |
2.23 |
d2 *= d2;
|
| 143 |
greg |
2.54 |
d3 = DOT(vtmp,vtmp);
|
| 144 |
|
|
d4 = (d3 - d2) / d2;
|
| 145 |
|
|
/* new W-G-M-D model */
|
| 146 |
|
|
dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
|
| 147 |
greg |
1.3 |
/* worth using? */
|
| 148 |
|
|
if (dtmp > FTINY) {
|
| 149 |
|
|
copycolor(ctmp, np->scolor);
|
| 150 |
greg |
2.54 |
dtmp *= ldot * omega;
|
| 151 |
greg |
1.3 |
scalecolor(ctmp, dtmp);
|
| 152 |
|
|
addcolor(cval, ctmp);
|
| 153 |
|
|
}
|
| 154 |
|
|
}
|
| 155 |
greg |
2.69 |
|
| 156 |
|
|
|
| 157 |
greg |
2.2 |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
|
| 158 |
greg |
1.3 |
/*
|
| 159 |
greg |
1.4 |
* Compute specular transmission. Specular transmission
|
| 160 |
greg |
1.13 |
* is always modified by material color.
|
| 161 |
greg |
1.3 |
*/
|
| 162 |
|
|
/* roughness + source */
|
| 163 |
greg |
2.48 |
dtmp = np->alpha2 + omega*(1.0/PI);
|
| 164 |
greg |
2.54 |
/* Gaussian */
|
| 165 |
greg |
2.53 |
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
|
| 166 |
greg |
1.3 |
/* worth using? */
|
| 167 |
|
|
if (dtmp > FTINY) {
|
| 168 |
greg |
1.13 |
copycolor(ctmp, np->mcolor);
|
| 169 |
greg |
2.52 |
dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
|
| 170 |
greg |
1.13 |
scalecolor(ctmp, dtmp);
|
| 171 |
greg |
1.3 |
addcolor(cval, ctmp);
|
| 172 |
|
|
}
|
| 173 |
|
|
}
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
|
| 177 |
greg |
2.62 |
int
|
| 178 |
schorsch |
2.47 |
m_normal( /* color a ray that hit something normal */
|
| 179 |
greg |
2.62 |
OBJREC *m,
|
| 180 |
|
|
RAY *r
|
| 181 |
schorsch |
2.47 |
)
|
| 182 |
greg |
1.3 |
{
|
| 183 |
|
|
NORMDAT nd;
|
| 184 |
greg |
2.38 |
double fest;
|
| 185 |
greg |
2.29 |
int hastexture;
|
| 186 |
|
|
double d;
|
| 187 |
greg |
1.1 |
COLOR ctmp;
|
| 188 |
greg |
2.62 |
int i;
|
| 189 |
greg |
2.69 |
|
| 190 |
|
|
/* PMAP: skip transmitted shadow ray if accounted for in photon map */
|
| 191 |
rschregle |
2.74 |
/* No longer needed?
|
| 192 |
greg |
2.73 |
if (shadowRayInPmap(r) || ambRayInPmap(r))
|
| 193 |
rschregle |
2.74 |
return(1); */
|
| 194 |
|
|
|
| 195 |
greg |
1.1 |
/* easy shadow test */
|
| 196 |
|
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS)
|
| 197 |
greg |
2.27 |
return(1);
|
| 198 |
greg |
2.2 |
|
| 199 |
|
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
|
| 200 |
|
|
objerror(m, USER, "bad number of arguments");
|
| 201 |
greg |
2.29 |
/* check for back side */
|
| 202 |
|
|
if (r->rod < 0.0) {
|
| 203 |
greg |
2.66 |
if (!backvis) {
|
| 204 |
greg |
2.29 |
raytrans(r);
|
| 205 |
|
|
return(1);
|
| 206 |
|
|
}
|
| 207 |
greg |
2.40 |
raytexture(r, m->omod);
|
| 208 |
greg |
2.29 |
flipsurface(r); /* reorient if backvis */
|
| 209 |
greg |
2.40 |
} else
|
| 210 |
|
|
raytexture(r, m->omod);
|
| 211 |
greg |
1.3 |
nd.mp = m;
|
| 212 |
greg |
2.16 |
nd.rp = r;
|
| 213 |
greg |
1.1 |
/* get material color */
|
| 214 |
greg |
1.3 |
setcolor(nd.mcolor, m->oargs.farg[0],
|
| 215 |
greg |
1.1 |
m->oargs.farg[1],
|
| 216 |
|
|
m->oargs.farg[2]);
|
| 217 |
|
|
/* get roughness */
|
| 218 |
greg |
2.2 |
nd.specfl = 0;
|
| 219 |
greg |
1.3 |
nd.alpha2 = m->oargs.farg[4];
|
| 220 |
greg |
2.2 |
if ((nd.alpha2 *= nd.alpha2) <= FTINY)
|
| 221 |
|
|
nd.specfl |= SP_PURE;
|
| 222 |
greg |
2.40 |
|
| 223 |
schorsch |
2.45 |
if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
|
| 224 |
greg |
2.29 |
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
|
| 225 |
greg |
2.41 |
} else {
|
| 226 |
greg |
2.29 |
VCOPY(nd.pnorm, r->ron);
|
| 227 |
|
|
nd.pdot = r->rod;
|
| 228 |
|
|
}
|
| 229 |
greg |
2.42 |
if (r->ro != NULL && isflat(r->ro->otype))
|
| 230 |
|
|
nd.specfl |= SP_FLAT;
|
| 231 |
greg |
1.13 |
if (nd.pdot < .001)
|
| 232 |
|
|
nd.pdot = .001; /* non-zero for dirnorm() */
|
| 233 |
greg |
1.3 |
multcolor(nd.mcolor, r->pcol); /* modify material color */
|
| 234 |
greg |
2.30 |
nd.rspec = m->oargs.farg[3];
|
| 235 |
greg |
2.38 |
/* compute Fresnel approx. */
|
| 236 |
greg |
2.51 |
if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
|
| 237 |
greg |
2.62 |
fest = FRESNE(nd.pdot);
|
| 238 |
greg |
2.38 |
nd.rspec += fest*(1. - nd.rspec);
|
| 239 |
|
|
} else
|
| 240 |
|
|
fest = 0.;
|
| 241 |
greg |
1.3 |
/* compute transmission */
|
| 242 |
greg |
1.1 |
if (m->otype == MAT_TRANS) {
|
| 243 |
greg |
1.3 |
nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
|
| 244 |
|
|
nd.tspec = nd.trans * m->oargs.farg[6];
|
| 245 |
|
|
nd.tdiff = nd.trans - nd.tspec;
|
| 246 |
greg |
2.2 |
if (nd.tspec > FTINY) {
|
| 247 |
|
|
nd.specfl |= SP_TRAN;
|
| 248 |
greg |
2.5 |
/* check threshold */
|
| 249 |
greg |
2.25 |
if (!(nd.specfl & SP_PURE) &&
|
| 250 |
|
|
specthresh >= nd.tspec-FTINY)
|
| 251 |
greg |
2.5 |
nd.specfl |= SP_TBLT;
|
| 252 |
greg |
2.67 |
if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
|
| 253 |
greg |
2.2 |
VCOPY(nd.prdir, r->rdir);
|
| 254 |
|
|
} else {
|
| 255 |
greg |
2.76 |
/* perturb */
|
| 256 |
|
|
VSUB(nd.prdir, r->rdir, r->pert);
|
| 257 |
greg |
2.7 |
if (DOT(nd.prdir, r->ron) < -FTINY)
|
| 258 |
|
|
normalize(nd.prdir); /* OK */
|
| 259 |
|
|
else
|
| 260 |
|
|
VCOPY(nd.prdir, r->rdir);
|
| 261 |
greg |
2.2 |
}
|
| 262 |
greg |
1.14 |
}
|
| 263 |
greg |
1.1 |
} else
|
| 264 |
greg |
1.3 |
nd.tdiff = nd.tspec = nd.trans = 0.0;
|
| 265 |
greg |
2.79 |
/* diffuse reflection */
|
| 266 |
|
|
nd.rdiff = 1.0 - nd.trans - nd.rspec;
|
| 267 |
greg |
1.1 |
/* transmitted ray */
|
| 268 |
greg |
2.71 |
if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
|
| 269 |
greg |
1.3 |
RAY lr;
|
| 270 |
greg |
2.50 |
copycolor(lr.rcoef, nd.mcolor); /* modified by color */
|
| 271 |
|
|
scalecolor(lr.rcoef, nd.tspec);
|
| 272 |
|
|
if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
|
| 273 |
greg |
1.14 |
VCOPY(lr.rdir, nd.prdir);
|
| 274 |
greg |
1.1 |
rayvalue(&lr);
|
| 275 |
greg |
2.50 |
multcolor(lr.rcol, lr.rcoef);
|
| 276 |
greg |
1.1 |
addcolor(r->rcol, lr.rcol);
|
| 277 |
greg |
2.78 |
if (nd.tspec >= 1.0-FTINY) {
|
| 278 |
|
|
/* completely transparent */
|
| 279 |
|
|
multcolor(lr.mcol, lr.rcoef);
|
| 280 |
|
|
copycolor(r->mcol, lr.mcol);
|
| 281 |
|
|
r->rmt = r->rot + lr.rmt;
|
| 282 |
|
|
r->rxt = r->rot + lr.rxt;
|
| 283 |
greg |
2.79 |
} else if (nd.tspec > nd.tdiff + nd.rdiff)
|
| 284 |
greg |
2.78 |
r->rxt = r->rot + raydistance(&lr);
|
| 285 |
greg |
1.1 |
}
|
| 286 |
greg |
2.77 |
}
|
| 287 |
greg |
2.2 |
|
| 288 |
greg |
2.77 |
if (r->crtype & SHADOW) /* the rest is shadow */
|
| 289 |
greg |
2.27 |
return(1);
|
| 290 |
greg |
2.30 |
/* get specular reflection */
|
| 291 |
|
|
if (nd.rspec > FTINY) {
|
| 292 |
|
|
nd.specfl |= SP_REFL;
|
| 293 |
|
|
/* compute specular color */
|
| 294 |
greg |
2.38 |
if (m->otype != MAT_METAL) {
|
| 295 |
|
|
setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
|
| 296 |
|
|
} else if (fest > FTINY) {
|
| 297 |
greg |
2.64 |
d = m->oargs.farg[3]*(1. - fest);
|
| 298 |
greg |
2.38 |
for (i = 0; i < 3; i++)
|
| 299 |
greg |
2.65 |
colval(nd.scolor,i) = fest +
|
| 300 |
|
|
colval(nd.mcolor,i)*d;
|
| 301 |
greg |
2.38 |
} else {
|
| 302 |
greg |
2.30 |
copycolor(nd.scolor, nd.mcolor);
|
| 303 |
greg |
2.38 |
scalecolor(nd.scolor, nd.rspec);
|
| 304 |
|
|
}
|
| 305 |
greg |
2.30 |
/* check threshold */
|
| 306 |
|
|
if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
|
| 307 |
|
|
nd.specfl |= SP_RBLT;
|
| 308 |
|
|
/* compute reflected ray */
|
| 309 |
greg |
2.55 |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
|
| 310 |
greg |
2.30 |
/* penetration? */
|
| 311 |
|
|
if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
|
| 312 |
greg |
2.55 |
VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
|
| 313 |
greg |
2.53 |
checknorm(nd.vrefl);
|
| 314 |
gregl |
2.36 |
}
|
| 315 |
|
|
/* reflected ray */
|
| 316 |
greg |
2.71 |
if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
|
| 317 |
gregl |
2.36 |
RAY lr;
|
| 318 |
greg |
2.50 |
if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
|
| 319 |
gregl |
2.36 |
VCOPY(lr.rdir, nd.vrefl);
|
| 320 |
|
|
rayvalue(&lr);
|
| 321 |
greg |
2.50 |
multcolor(lr.rcol, lr.rcoef);
|
| 322 |
greg |
2.77 |
copycolor(r->mcol, lr.rcol);
|
| 323 |
gregl |
2.36 |
addcolor(r->rcol, lr.rcol);
|
| 324 |
greg |
2.67 |
if (nd.specfl & SP_FLAT &&
|
| 325 |
greg |
2.77 |
!hastexture | (r->crtype & AMBIENT))
|
| 326 |
|
|
r->rmt = r->rot + raydistance(&lr);
|
| 327 |
greg |
2.30 |
}
|
| 328 |
greg |
2.29 |
}
|
| 329 |
greg |
1.1 |
|
| 330 |
greg |
2.77 |
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
|
| 331 |
greg |
2.27 |
return(1); /* 100% pure specular */
|
| 332 |
greg |
2.77 |
|
| 333 |
greg |
2.71 |
if (!(nd.specfl & SP_PURE))
|
| 334 |
|
|
gaussamp(&nd); /* checks *BLT flags */
|
| 335 |
greg |
2.2 |
|
| 336 |
greg |
1.3 |
if (nd.rdiff > FTINY) { /* ambient from this side */
|
| 337 |
greg |
2.50 |
copycolor(ctmp, nd.mcolor); /* modified by material color */
|
| 338 |
greg |
2.61 |
scalecolor(ctmp, nd.rdiff);
|
| 339 |
|
|
if (nd.specfl & SP_RBLT) /* add in specular as well? */
|
| 340 |
|
|
addcolor(ctmp, nd.scolor);
|
| 341 |
greg |
2.50 |
multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
|
| 342 |
greg |
1.2 |
addcolor(r->rcol, ctmp); /* add to returned color */
|
| 343 |
|
|
}
|
| 344 |
greg |
1.3 |
if (nd.tdiff > FTINY) { /* ambient from other side */
|
| 345 |
greg |
2.50 |
copycolor(ctmp, nd.mcolor); /* modified by color */
|
| 346 |
|
|
if (nd.specfl & SP_TBLT)
|
| 347 |
|
|
scalecolor(ctmp, nd.trans);
|
| 348 |
|
|
else
|
| 349 |
|
|
scalecolor(ctmp, nd.tdiff);
|
| 350 |
greg |
1.1 |
flipsurface(r);
|
| 351 |
greg |
2.32 |
if (hastexture) {
|
| 352 |
|
|
FVECT bnorm;
|
| 353 |
|
|
bnorm[0] = -nd.pnorm[0];
|
| 354 |
|
|
bnorm[1] = -nd.pnorm[1];
|
| 355 |
|
|
bnorm[2] = -nd.pnorm[2];
|
| 356 |
greg |
2.50 |
multambient(ctmp, r, bnorm);
|
| 357 |
greg |
2.32 |
} else
|
| 358 |
greg |
2.50 |
multambient(ctmp, r, r->ron);
|
| 359 |
greg |
1.1 |
addcolor(r->rcol, ctmp);
|
| 360 |
|
|
flipsurface(r);
|
| 361 |
|
|
}
|
| 362 |
greg |
1.3 |
/* add direct component */
|
| 363 |
|
|
direct(r, dirnorm, &nd);
|
| 364 |
greg |
2.27 |
|
| 365 |
|
|
return(1);
|
| 366 |
greg |
2.2 |
}
|
| 367 |
|
|
|
| 368 |
|
|
|
| 369 |
greg |
2.38 |
static void
|
| 370 |
greg |
2.54 |
gaussamp( /* sample Gaussian specular */
|
| 371 |
greg |
2.62 |
NORMDAT *np
|
| 372 |
schorsch |
2.47 |
)
|
| 373 |
greg |
2.2 |
{
|
| 374 |
|
|
RAY sr;
|
| 375 |
|
|
FVECT u, v, h;
|
| 376 |
|
|
double rv[2];
|
| 377 |
|
|
double d, sinp, cosp;
|
| 378 |
greg |
2.62 |
COLOR scol;
|
| 379 |
greg |
2.58 |
int maxiter, ntrials, nstarget, nstaken;
|
| 380 |
greg |
2.62 |
int i;
|
| 381 |
greg |
2.13 |
/* quick test */
|
| 382 |
|
|
if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
|
| 383 |
|
|
(np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
|
| 384 |
|
|
return;
|
| 385 |
greg |
2.2 |
/* set up sample coordinates */
|
| 386 |
greg |
2.70 |
getperpendicular(u, np->pnorm, rand_samp);
|
| 387 |
greg |
2.2 |
fcross(v, np->pnorm, u);
|
| 388 |
|
|
/* compute reflection */
|
| 389 |
greg |
2.5 |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
|
| 390 |
greg |
2.63 |
rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
|
| 391 |
greg |
2.58 |
nstarget = 1;
|
| 392 |
greg |
2.55 |
if (specjitter > 1.5) { /* multiple samples? */
|
| 393 |
greg |
2.63 |
nstarget = specjitter*np->rp->rweight + .5;
|
| 394 |
greg |
2.58 |
if (sr.rweight <= minweight*nstarget)
|
| 395 |
|
|
nstarget = sr.rweight/minweight;
|
| 396 |
|
|
if (nstarget > 1) {
|
| 397 |
|
|
d = 1./nstarget;
|
| 398 |
|
|
scalecolor(sr.rcoef, d);
|
| 399 |
greg |
2.56 |
sr.rweight *= d;
|
| 400 |
greg |
2.55 |
} else
|
| 401 |
greg |
2.58 |
nstarget = 1;
|
| 402 |
greg |
2.55 |
}
|
| 403 |
greg |
2.58 |
setcolor(scol, 0., 0., 0.);
|
| 404 |
greg |
2.60 |
dimlist[ndims++] = (int)(size_t)np->mp;
|
| 405 |
greg |
2.58 |
maxiter = MAXITER*nstarget;
|
| 406 |
|
|
for (nstaken = ntrials = 0; nstaken < nstarget &&
|
| 407 |
|
|
ntrials < maxiter; ntrials++) {
|
| 408 |
|
|
if (ntrials)
|
| 409 |
greg |
2.34 |
d = frandom();
|
| 410 |
|
|
else
|
| 411 |
|
|
d = urand(ilhash(dimlist,ndims)+samplendx);
|
| 412 |
|
|
multisamp(rv, 2, d);
|
| 413 |
|
|
d = 2.0*PI * rv[0];
|
| 414 |
gwlarson |
2.37 |
cosp = tcos(d);
|
| 415 |
|
|
sinp = tsin(d);
|
| 416 |
greg |
2.55 |
if ((0. <= specjitter) & (specjitter < 1.))
|
| 417 |
|
|
rv[1] = 1.0 - specjitter*rv[1];
|
| 418 |
greg |
2.34 |
if (rv[1] <= FTINY)
|
| 419 |
|
|
d = 1.0;
|
| 420 |
|
|
else
|
| 421 |
|
|
d = sqrt( np->alpha2 * -log(rv[1]) );
|
| 422 |
|
|
for (i = 0; i < 3; i++)
|
| 423 |
|
|
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
|
| 424 |
greg |
2.63 |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
|
| 425 |
|
|
VSUM(sr.rdir, np->rp->rdir, h, d);
|
| 426 |
greg |
2.58 |
/* sample rejection test */
|
| 427 |
greg |
2.63 |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
|
| 428 |
greg |
2.55 |
continue;
|
| 429 |
|
|
checknorm(sr.rdir);
|
| 430 |
greg |
2.58 |
if (nstarget > 1) { /* W-G-M-D adjustment */
|
| 431 |
greg |
2.59 |
if (nstaken) rayclear(&sr);
|
| 432 |
greg |
2.58 |
rayvalue(&sr);
|
| 433 |
greg |
2.63 |
d = 2./(1. + np->rp->rod/d);
|
| 434 |
greg |
2.58 |
scalecolor(sr.rcol, d);
|
| 435 |
|
|
addcolor(scol, sr.rcol);
|
| 436 |
|
|
} else {
|
| 437 |
|
|
rayvalue(&sr);
|
| 438 |
|
|
multcolor(sr.rcol, sr.rcoef);
|
| 439 |
greg |
2.63 |
addcolor(np->rp->rcol, sr.rcol);
|
| 440 |
greg |
2.34 |
}
|
| 441 |
greg |
2.58 |
++nstaken;
|
| 442 |
|
|
}
|
| 443 |
|
|
if (nstarget > 1) { /* final W-G-M-D weighting */
|
| 444 |
|
|
multcolor(scol, sr.rcoef);
|
| 445 |
|
|
d = (double)nstarget/ntrials;
|
| 446 |
|
|
scalecolor(scol, d);
|
| 447 |
greg |
2.63 |
addcolor(np->rp->rcol, scol);
|
| 448 |
greg |
2.34 |
}
|
| 449 |
greg |
2.2 |
ndims--;
|
| 450 |
|
|
}
|
| 451 |
|
|
/* compute transmission */
|
| 452 |
greg |
2.50 |
copycolor(sr.rcoef, np->mcolor); /* modified by color */
|
| 453 |
|
|
scalecolor(sr.rcoef, np->tspec);
|
| 454 |
greg |
2.8 |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
|
| 455 |
greg |
2.63 |
rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
|
| 456 |
greg |
2.58 |
nstarget = 1;
|
| 457 |
greg |
2.55 |
if (specjitter > 1.5) { /* multiple samples? */
|
| 458 |
greg |
2.63 |
nstarget = specjitter*np->rp->rweight + .5;
|
| 459 |
greg |
2.58 |
if (sr.rweight <= minweight*nstarget)
|
| 460 |
|
|
nstarget = sr.rweight/minweight;
|
| 461 |
|
|
if (nstarget > 1) {
|
| 462 |
|
|
d = 1./nstarget;
|
| 463 |
greg |
2.56 |
scalecolor(sr.rcoef, d);
|
| 464 |
|
|
sr.rweight *= d;
|
| 465 |
greg |
2.55 |
} else
|
| 466 |
greg |
2.58 |
nstarget = 1;
|
| 467 |
greg |
2.55 |
}
|
| 468 |
greg |
2.60 |
dimlist[ndims++] = (int)(size_t)np->mp;
|
| 469 |
greg |
2.58 |
maxiter = MAXITER*nstarget;
|
| 470 |
|
|
for (nstaken = ntrials = 0; nstaken < nstarget &&
|
| 471 |
|
|
ntrials < maxiter; ntrials++) {
|
| 472 |
|
|
if (ntrials)
|
| 473 |
greg |
2.34 |
d = frandom();
|
| 474 |
|
|
else
|
| 475 |
greg |
2.58 |
d = urand(ilhash(dimlist,ndims)+samplendx);
|
| 476 |
greg |
2.34 |
multisamp(rv, 2, d);
|
| 477 |
|
|
d = 2.0*PI * rv[0];
|
| 478 |
gwlarson |
2.37 |
cosp = tcos(d);
|
| 479 |
|
|
sinp = tsin(d);
|
| 480 |
greg |
2.55 |
if ((0. <= specjitter) & (specjitter < 1.))
|
| 481 |
|
|
rv[1] = 1.0 - specjitter*rv[1];
|
| 482 |
greg |
2.34 |
if (rv[1] <= FTINY)
|
| 483 |
|
|
d = 1.0;
|
| 484 |
|
|
else
|
| 485 |
gwlarson |
2.37 |
d = sqrt( np->alpha2 * -log(rv[1]) );
|
| 486 |
greg |
2.34 |
for (i = 0; i < 3; i++)
|
| 487 |
|
|
sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
|
| 488 |
greg |
2.58 |
/* sample rejection test */
|
| 489 |
greg |
2.63 |
if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
|
| 490 |
greg |
2.55 |
continue;
|
| 491 |
|
|
normalize(sr.rdir); /* OK, normalize */
|
| 492 |
greg |
2.59 |
if (nstaken) /* multi-sampling */
|
| 493 |
greg |
2.55 |
rayclear(&sr);
|
| 494 |
|
|
rayvalue(&sr);
|
| 495 |
|
|
multcolor(sr.rcol, sr.rcoef);
|
| 496 |
greg |
2.63 |
addcolor(np->rp->rcol, sr.rcol);
|
| 497 |
greg |
2.58 |
++nstaken;
|
| 498 |
greg |
2.34 |
}
|
| 499 |
greg |
2.8 |
ndims--;
|
| 500 |
|
|
}
|
| 501 |
greg |
1.1 |
}
|