| 1 | greg | 1.1 | #ifndef lint | 
| 2 | greg | 2.79 | static const char RCSid[] = "$Id: normal.c,v 2.78 2019/02/13 01:00:31 greg Exp $"; | 
| 3 | greg | 1.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | *  normal.c - shading function for normal materials. | 
| 6 |  |  | * | 
| 7 |  |  | *     8/19/85 | 
| 8 |  |  | *     12/19/85 - added stuff for metals. | 
| 9 |  |  | *     6/26/87 - improved specular model. | 
| 10 |  |  | *     9/28/87 - added model for translucent materials. | 
| 11 | greg | 2.2 | *     Later changes described in delta comments. | 
| 12 | greg | 1.1 | */ | 
| 13 |  |  |  | 
| 14 | greg | 2.39 | #include "copyright.h" | 
| 15 | greg | 2.38 |  | 
| 16 | greg | 1.1 | #include  "ray.h" | 
| 17 | greg | 2.46 | #include  "ambient.h" | 
| 18 | schorsch | 2.47 | #include  "source.h" | 
| 19 | greg | 1.1 | #include  "otypes.h" | 
| 20 | schorsch | 2.47 | #include  "rtotypes.h" | 
| 21 | greg | 2.2 | #include  "random.h" | 
| 22 | greg | 2.69 | #include  "pmapmat.h" | 
| 23 | greg | 2.2 |  | 
| 24 | greg | 2.34 | #ifndef  MAXITER | 
| 25 |  |  | #define  MAXITER        10              /* maximum # specular ray attempts */ | 
| 26 |  |  | #endif | 
| 27 | greg | 2.38 | /* estimate of Fresnel function */ | 
| 28 | greg | 2.44 | #define  FRESNE(ci)     (exp(-5.85*(ci)) - 0.00287989916) | 
| 29 | greg | 2.51 | #define  FRESTHRESH     0.017999        /* minimum specularity for approx. */ | 
| 30 | greg | 2.34 |  | 
| 31 | greg | 2.24 |  | 
| 32 | greg | 1.1 | /* | 
| 33 | greg | 2.22 | *      This routine implements the isotropic Gaussian | 
| 34 |  |  | *  model described by Ward in Siggraph `92 article. | 
| 35 | greg | 1.1 | *      We orient the surface towards the incoming ray, so a single | 
| 36 |  |  | *  surface can be used to represent an infinitely thin object. | 
| 37 |  |  | * | 
| 38 |  |  | *  Arguments for MAT_PLASTIC and MAT_METAL are: | 
| 39 |  |  | *      red     grn     blu     specular-frac.  facet-slope | 
| 40 |  |  | * | 
| 41 |  |  | *  Arguments for MAT_TRANS are: | 
| 42 |  |  | *      red     grn     blu     rspec   rough   trans   tspec | 
| 43 |  |  | */ | 
| 44 |  |  |  | 
| 45 | greg | 2.2 | /* specularity flags */ | 
| 46 |  |  | #define  SP_REFL        01              /* has reflected specular component */ | 
| 47 |  |  | #define  SP_TRAN        02              /* has transmitted specular */ | 
| 48 | greg | 2.11 | #define  SP_PURE        04              /* purely specular (zero roughness) */ | 
| 49 |  |  | #define  SP_FLAT        010             /* flat reflecting surface */ | 
| 50 |  |  | #define  SP_RBLT        020             /* reflection below sample threshold */ | 
| 51 |  |  | #define  SP_TBLT        040             /* transmission below threshold */ | 
| 52 | greg | 1.1 |  | 
| 53 | greg | 1.3 | typedef struct { | 
| 54 |  |  | OBJREC  *mp;            /* material pointer */ | 
| 55 | greg | 2.16 | RAY  *rp;               /* ray pointer */ | 
| 56 | greg | 2.2 | short  specfl;          /* specularity flags, defined above */ | 
| 57 | greg | 1.1 | COLOR  mcolor;          /* color of this material */ | 
| 58 |  |  | COLOR  scolor;          /* color of specular component */ | 
| 59 |  |  | FVECT  vrefl;           /* vector in direction of reflected ray */ | 
| 60 | greg | 1.14 | FVECT  prdir;           /* vector in transmitted direction */ | 
| 61 | greg | 2.2 | double  alpha2;         /* roughness squared */ | 
| 62 | greg | 1.1 | double  rdiff, rspec;   /* reflected specular, diffuse */ | 
| 63 |  |  | double  trans;          /* transmissivity */ | 
| 64 |  |  | double  tdiff, tspec;   /* transmitted specular, diffuse */ | 
| 65 |  |  | FVECT  pnorm;           /* perturbed surface normal */ | 
| 66 |  |  | double  pdot;           /* perturbed dot product */ | 
| 67 | greg | 1.3 | }  NORMDAT;             /* normal material data */ | 
| 68 |  |  |  | 
| 69 | greg | 2.63 | static void gaussamp(NORMDAT  *np); | 
| 70 | schorsch | 2.47 |  | 
| 71 | greg | 1.3 |  | 
| 72 | greg | 2.38 | static void | 
| 73 | schorsch | 2.47 | dirnorm(                /* compute source contribution */ | 
| 74 |  |  | COLOR  cval,                    /* returned coefficient */ | 
| 75 | greg | 2.62 | void  *nnp,                     /* material data */ | 
| 76 | schorsch | 2.47 | FVECT  ldir,                    /* light source direction */ | 
| 77 |  |  | double  omega                   /* light source size */ | 
| 78 |  |  | ) | 
| 79 | greg | 1.3 | { | 
| 80 | greg | 2.62 | NORMDAT *np = nnp; | 
| 81 | greg | 1.1 | double  ldot; | 
| 82 | greg | 2.49 | double  lrdiff, ltdiff; | 
| 83 | greg | 2.54 | double  dtmp, d2, d3, d4; | 
| 84 | greg | 2.16 | FVECT  vtmp; | 
| 85 | greg | 1.3 | COLOR  ctmp; | 
| 86 |  |  |  | 
| 87 |  |  | setcolor(cval, 0.0, 0.0, 0.0); | 
| 88 |  |  |  | 
| 89 |  |  | ldot = DOT(np->pnorm, ldir); | 
| 90 |  |  |  | 
| 91 |  |  | if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) | 
| 92 |  |  | return;         /* wrong side */ | 
| 93 |  |  |  | 
| 94 | greg | 2.38 | /* Fresnel estimate */ | 
| 95 | greg | 2.49 | lrdiff = np->rdiff; | 
| 96 |  |  | ltdiff = np->tdiff; | 
| 97 | greg | 2.51 | if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH && | 
| 98 | greg | 2.49 | (lrdiff > FTINY) | (ltdiff > FTINY)) { | 
| 99 |  |  | dtmp = 1. - FRESNE(fabs(ldot)); | 
| 100 |  |  | lrdiff *= dtmp; | 
| 101 |  |  | ltdiff *= dtmp; | 
| 102 |  |  | } | 
| 103 | greg | 2.38 |  | 
| 104 | greg | 2.49 | if (ldot > FTINY && lrdiff > FTINY) { | 
| 105 | greg | 1.3 | /* | 
| 106 | greg | 1.4 | *  Compute and add diffuse reflected component to returned | 
| 107 |  |  | *  color.  The diffuse reflected component will always be | 
| 108 |  |  | *  modified by the color of the material. | 
| 109 | greg | 1.3 | */ | 
| 110 |  |  | copycolor(ctmp, np->mcolor); | 
| 111 | greg | 2.49 | dtmp = ldot * omega * lrdiff * (1.0/PI); | 
| 112 | greg | 1.3 | scalecolor(ctmp, dtmp); | 
| 113 |  |  | addcolor(cval, ctmp); | 
| 114 |  |  | } | 
| 115 | greg | 2.72 |  | 
| 116 | greg | 2.69 | if (ldot < -FTINY && ltdiff > FTINY) { | 
| 117 |  |  | /* | 
| 118 |  |  | *  Compute diffuse transmission. | 
| 119 |  |  | */ | 
| 120 |  |  | copycolor(ctmp, np->mcolor); | 
| 121 |  |  | dtmp = -ldot * omega * ltdiff * (1.0/PI); | 
| 122 |  |  | scalecolor(ctmp, dtmp); | 
| 123 |  |  | addcolor(cval, ctmp); | 
| 124 |  |  | } | 
| 125 | greg | 2.72 |  | 
| 126 |  |  | if (ambRayInPmap(np->rp)) | 
| 127 |  |  | return;         /* specular already in photon map */ | 
| 128 |  |  |  | 
| 129 | greg | 2.2 | if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { | 
| 130 | greg | 1.3 | /* | 
| 131 |  |  | *  Compute specular reflection coefficient using | 
| 132 | greg | 2.54 | *  Gaussian distribution model. | 
| 133 | greg | 1.3 | */ | 
| 134 | greg | 2.3 | /* roughness */ | 
| 135 | greg | 2.16 | dtmp = np->alpha2; | 
| 136 | greg | 2.3 | /* + source if flat */ | 
| 137 |  |  | if (np->specfl & SP_FLAT) | 
| 138 | greg | 2.48 | dtmp += omega * (0.25/PI); | 
| 139 | greg | 2.23 | /* half vector */ | 
| 140 | greg | 2.62 | VSUB(vtmp, ldir, np->rp->rdir); | 
| 141 | greg | 2.16 | d2 = DOT(vtmp, np->pnorm); | 
| 142 | greg | 2.23 | d2 *= d2; | 
| 143 | greg | 2.54 | d3 = DOT(vtmp,vtmp); | 
| 144 |  |  | d4 = (d3 - d2) / d2; | 
| 145 |  |  | /* new W-G-M-D model */ | 
| 146 |  |  | dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp); | 
| 147 | greg | 1.3 | /* worth using? */ | 
| 148 |  |  | if (dtmp > FTINY) { | 
| 149 |  |  | copycolor(ctmp, np->scolor); | 
| 150 | greg | 2.54 | dtmp *= ldot * omega; | 
| 151 | greg | 1.3 | scalecolor(ctmp, dtmp); | 
| 152 |  |  | addcolor(cval, ctmp); | 
| 153 |  |  | } | 
| 154 |  |  | } | 
| 155 | greg | 2.69 |  | 
| 156 |  |  |  | 
| 157 | greg | 2.2 | if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { | 
| 158 | greg | 1.3 | /* | 
| 159 | greg | 1.4 | *  Compute specular transmission.  Specular transmission | 
| 160 | greg | 1.13 | *  is always modified by material color. | 
| 161 | greg | 1.3 | */ | 
| 162 |  |  | /* roughness + source */ | 
| 163 | greg | 2.48 | dtmp = np->alpha2 + omega*(1.0/PI); | 
| 164 | greg | 2.54 | /* Gaussian */ | 
| 165 | greg | 2.53 | dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); | 
| 166 | greg | 1.3 | /* worth using? */ | 
| 167 |  |  | if (dtmp > FTINY) { | 
| 168 | greg | 1.13 | copycolor(ctmp, np->mcolor); | 
| 169 | greg | 2.52 | dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); | 
| 170 | greg | 1.13 | scalecolor(ctmp, dtmp); | 
| 171 | greg | 1.3 | addcolor(cval, ctmp); | 
| 172 |  |  | } | 
| 173 |  |  | } | 
| 174 |  |  | } | 
| 175 |  |  |  | 
| 176 |  |  |  | 
| 177 | greg | 2.62 | int | 
| 178 | schorsch | 2.47 | m_normal(                       /* color a ray that hit something normal */ | 
| 179 | greg | 2.62 | OBJREC  *m, | 
| 180 |  |  | RAY  *r | 
| 181 | schorsch | 2.47 | ) | 
| 182 | greg | 1.3 | { | 
| 183 |  |  | NORMDAT  nd; | 
| 184 | greg | 2.38 | double  fest; | 
| 185 | greg | 2.29 | int     hastexture; | 
| 186 |  |  | double  d; | 
| 187 | greg | 1.1 | COLOR  ctmp; | 
| 188 | greg | 2.62 | int  i; | 
| 189 | greg | 2.69 |  | 
| 190 |  |  | /* PMAP: skip transmitted shadow ray if accounted for in photon map */ | 
| 191 | rschregle | 2.74 | /* No longer needed? | 
| 192 | greg | 2.73 | if (shadowRayInPmap(r) || ambRayInPmap(r)) | 
| 193 | rschregle | 2.74 | return(1); */ | 
| 194 |  |  |  | 
| 195 | greg | 1.1 | /* easy shadow test */ | 
| 196 |  |  | if (r->crtype & SHADOW && m->otype != MAT_TRANS) | 
| 197 | greg | 2.27 | return(1); | 
| 198 | greg | 2.2 |  | 
| 199 |  |  | if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) | 
| 200 |  |  | objerror(m, USER, "bad number of arguments"); | 
| 201 | greg | 2.29 | /* check for back side */ | 
| 202 |  |  | if (r->rod < 0.0) { | 
| 203 | greg | 2.66 | if (!backvis) { | 
| 204 | greg | 2.29 | raytrans(r); | 
| 205 |  |  | return(1); | 
| 206 |  |  | } | 
| 207 | greg | 2.40 | raytexture(r, m->omod); | 
| 208 | greg | 2.29 | flipsurface(r);                 /* reorient if backvis */ | 
| 209 | greg | 2.40 | } else | 
| 210 |  |  | raytexture(r, m->omod); | 
| 211 | greg | 1.3 | nd.mp = m; | 
| 212 | greg | 2.16 | nd.rp = r; | 
| 213 | greg | 1.1 | /* get material color */ | 
| 214 | greg | 1.3 | setcolor(nd.mcolor, m->oargs.farg[0], | 
| 215 | greg | 1.1 | m->oargs.farg[1], | 
| 216 |  |  | m->oargs.farg[2]); | 
| 217 |  |  | /* get roughness */ | 
| 218 | greg | 2.2 | nd.specfl = 0; | 
| 219 | greg | 1.3 | nd.alpha2 = m->oargs.farg[4]; | 
| 220 | greg | 2.2 | if ((nd.alpha2 *= nd.alpha2) <= FTINY) | 
| 221 |  |  | nd.specfl |= SP_PURE; | 
| 222 | greg | 2.40 |  | 
| 223 | schorsch | 2.45 | if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) { | 
| 224 | greg | 2.29 | nd.pdot = raynormal(nd.pnorm, r);       /* perturb normal */ | 
| 225 | greg | 2.41 | } else { | 
| 226 | greg | 2.29 | VCOPY(nd.pnorm, r->ron); | 
| 227 |  |  | nd.pdot = r->rod; | 
| 228 |  |  | } | 
| 229 | greg | 2.42 | if (r->ro != NULL && isflat(r->ro->otype)) | 
| 230 |  |  | nd.specfl |= SP_FLAT; | 
| 231 | greg | 1.13 | if (nd.pdot < .001) | 
| 232 |  |  | nd.pdot = .001;                 /* non-zero for dirnorm() */ | 
| 233 | greg | 1.3 | multcolor(nd.mcolor, r->pcol);          /* modify material color */ | 
| 234 | greg | 2.30 | nd.rspec = m->oargs.farg[3]; | 
| 235 | greg | 2.38 | /* compute Fresnel approx. */ | 
| 236 | greg | 2.51 | if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) { | 
| 237 | greg | 2.62 | fest = FRESNE(nd.pdot); | 
| 238 | greg | 2.38 | nd.rspec += fest*(1. - nd.rspec); | 
| 239 |  |  | } else | 
| 240 |  |  | fest = 0.; | 
| 241 | greg | 1.3 | /* compute transmission */ | 
| 242 | greg | 1.1 | if (m->otype == MAT_TRANS) { | 
| 243 | greg | 1.3 | nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); | 
| 244 |  |  | nd.tspec = nd.trans * m->oargs.farg[6]; | 
| 245 |  |  | nd.tdiff = nd.trans - nd.tspec; | 
| 246 | greg | 2.2 | if (nd.tspec > FTINY) { | 
| 247 |  |  | nd.specfl |= SP_TRAN; | 
| 248 | greg | 2.5 | /* check threshold */ | 
| 249 | greg | 2.25 | if (!(nd.specfl & SP_PURE) && | 
| 250 |  |  | specthresh >= nd.tspec-FTINY) | 
| 251 | greg | 2.5 | nd.specfl |= SP_TBLT; | 
| 252 | greg | 2.67 | if (!hastexture || r->crtype & (SHADOW|AMBIENT)) { | 
| 253 | greg | 2.2 | VCOPY(nd.prdir, r->rdir); | 
| 254 |  |  | } else { | 
| 255 | greg | 2.76 | /* perturb */ | 
| 256 |  |  | VSUB(nd.prdir, r->rdir, r->pert); | 
| 257 | greg | 2.7 | if (DOT(nd.prdir, r->ron) < -FTINY) | 
| 258 |  |  | normalize(nd.prdir);    /* OK */ | 
| 259 |  |  | else | 
| 260 |  |  | VCOPY(nd.prdir, r->rdir); | 
| 261 | greg | 2.2 | } | 
| 262 | greg | 1.14 | } | 
| 263 | greg | 1.1 | } else | 
| 264 | greg | 1.3 | nd.tdiff = nd.tspec = nd.trans = 0.0; | 
| 265 | greg | 2.79 | /* diffuse reflection */ | 
| 266 |  |  | nd.rdiff = 1.0 - nd.trans - nd.rspec; | 
| 267 | greg | 1.1 | /* transmitted ray */ | 
| 268 | greg | 2.71 | if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { | 
| 269 | greg | 1.3 | RAY  lr; | 
| 270 | greg | 2.50 | copycolor(lr.rcoef, nd.mcolor); /* modified by color */ | 
| 271 |  |  | scalecolor(lr.rcoef, nd.tspec); | 
| 272 |  |  | if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) { | 
| 273 | greg | 1.14 | VCOPY(lr.rdir, nd.prdir); | 
| 274 | greg | 1.1 | rayvalue(&lr); | 
| 275 | greg | 2.50 | multcolor(lr.rcol, lr.rcoef); | 
| 276 | greg | 1.1 | addcolor(r->rcol, lr.rcol); | 
| 277 | greg | 2.78 | if (nd.tspec >= 1.0-FTINY) { | 
| 278 |  |  | /* completely transparent */ | 
| 279 |  |  | multcolor(lr.mcol, lr.rcoef); | 
| 280 |  |  | copycolor(r->mcol, lr.mcol); | 
| 281 |  |  | r->rmt = r->rot + lr.rmt; | 
| 282 |  |  | r->rxt = r->rot + lr.rxt; | 
| 283 | greg | 2.79 | } else if (nd.tspec > nd.tdiff + nd.rdiff) | 
| 284 | greg | 2.78 | r->rxt = r->rot + raydistance(&lr); | 
| 285 | greg | 1.1 | } | 
| 286 | greg | 2.77 | } | 
| 287 | greg | 2.2 |  | 
| 288 | greg | 2.77 | if (r->crtype & SHADOW)                 /* the rest is shadow */ | 
| 289 | greg | 2.27 | return(1); | 
| 290 | greg | 2.30 | /* get specular reflection */ | 
| 291 |  |  | if (nd.rspec > FTINY) { | 
| 292 |  |  | nd.specfl |= SP_REFL; | 
| 293 |  |  | /* compute specular color */ | 
| 294 | greg | 2.38 | if (m->otype != MAT_METAL) { | 
| 295 |  |  | setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec); | 
| 296 |  |  | } else if (fest > FTINY) { | 
| 297 | greg | 2.64 | d = m->oargs.farg[3]*(1. - fest); | 
| 298 | greg | 2.38 | for (i = 0; i < 3; i++) | 
| 299 | greg | 2.65 | colval(nd.scolor,i) = fest + | 
| 300 |  |  | colval(nd.mcolor,i)*d; | 
| 301 | greg | 2.38 | } else { | 
| 302 | greg | 2.30 | copycolor(nd.scolor, nd.mcolor); | 
| 303 | greg | 2.38 | scalecolor(nd.scolor, nd.rspec); | 
| 304 |  |  | } | 
| 305 | greg | 2.30 | /* check threshold */ | 
| 306 |  |  | if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) | 
| 307 |  |  | nd.specfl |= SP_RBLT; | 
| 308 |  |  | /* compute reflected ray */ | 
| 309 | greg | 2.55 | VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot); | 
| 310 | greg | 2.30 | /* penetration? */ | 
| 311 |  |  | if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY) | 
| 312 | greg | 2.55 | VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod); | 
| 313 | greg | 2.53 | checknorm(nd.vrefl); | 
| 314 | gregl | 2.36 | } | 
| 315 |  |  | /* reflected ray */ | 
| 316 | greg | 2.71 | if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { | 
| 317 | gregl | 2.36 | RAY  lr; | 
| 318 | greg | 2.50 | if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) { | 
| 319 | gregl | 2.36 | VCOPY(lr.rdir, nd.vrefl); | 
| 320 |  |  | rayvalue(&lr); | 
| 321 | greg | 2.50 | multcolor(lr.rcol, lr.rcoef); | 
| 322 | greg | 2.77 | copycolor(r->mcol, lr.rcol); | 
| 323 | gregl | 2.36 | addcolor(r->rcol, lr.rcol); | 
| 324 | greg | 2.67 | if (nd.specfl & SP_FLAT && | 
| 325 | greg | 2.77 | !hastexture | (r->crtype & AMBIENT)) | 
| 326 |  |  | r->rmt = r->rot + raydistance(&lr); | 
| 327 | greg | 2.30 | } | 
| 328 | greg | 2.29 | } | 
| 329 | greg | 1.1 |  | 
| 330 | greg | 2.77 | if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) | 
| 331 | greg | 2.27 | return(1);                      /* 100% pure specular */ | 
| 332 | greg | 2.77 |  | 
| 333 | greg | 2.71 | if (!(nd.specfl & SP_PURE)) | 
| 334 |  |  | gaussamp(&nd);                  /* checks *BLT flags */ | 
| 335 | greg | 2.2 |  | 
| 336 | greg | 1.3 | if (nd.rdiff > FTINY) {         /* ambient from this side */ | 
| 337 | greg | 2.50 | copycolor(ctmp, nd.mcolor);     /* modified by material color */ | 
| 338 | greg | 2.61 | scalecolor(ctmp, nd.rdiff); | 
| 339 |  |  | if (nd.specfl & SP_RBLT)        /* add in specular as well? */ | 
| 340 |  |  | addcolor(ctmp, nd.scolor); | 
| 341 | greg | 2.50 | multambient(ctmp, r, hastexture ? nd.pnorm : r->ron); | 
| 342 | greg | 1.2 | addcolor(r->rcol, ctmp);        /* add to returned color */ | 
| 343 |  |  | } | 
| 344 | greg | 1.3 | if (nd.tdiff > FTINY) {         /* ambient from other side */ | 
| 345 | greg | 2.50 | copycolor(ctmp, nd.mcolor);     /* modified by color */ | 
| 346 |  |  | if (nd.specfl & SP_TBLT) | 
| 347 |  |  | scalecolor(ctmp, nd.trans); | 
| 348 |  |  | else | 
| 349 |  |  | scalecolor(ctmp, nd.tdiff); | 
| 350 | greg | 1.1 | flipsurface(r); | 
| 351 | greg | 2.32 | if (hastexture) { | 
| 352 |  |  | FVECT  bnorm; | 
| 353 |  |  | bnorm[0] = -nd.pnorm[0]; | 
| 354 |  |  | bnorm[1] = -nd.pnorm[1]; | 
| 355 |  |  | bnorm[2] = -nd.pnorm[2]; | 
| 356 | greg | 2.50 | multambient(ctmp, r, bnorm); | 
| 357 | greg | 2.32 | } else | 
| 358 | greg | 2.50 | multambient(ctmp, r, r->ron); | 
| 359 | greg | 1.1 | addcolor(r->rcol, ctmp); | 
| 360 |  |  | flipsurface(r); | 
| 361 |  |  | } | 
| 362 | greg | 1.3 | /* add direct component */ | 
| 363 |  |  | direct(r, dirnorm, &nd); | 
| 364 | greg | 2.27 |  | 
| 365 |  |  | return(1); | 
| 366 | greg | 2.2 | } | 
| 367 |  |  |  | 
| 368 |  |  |  | 
| 369 | greg | 2.38 | static void | 
| 370 | greg | 2.54 | gaussamp(                       /* sample Gaussian specular */ | 
| 371 | greg | 2.62 | NORMDAT  *np | 
| 372 | schorsch | 2.47 | ) | 
| 373 | greg | 2.2 | { | 
| 374 |  |  | RAY  sr; | 
| 375 |  |  | FVECT  u, v, h; | 
| 376 |  |  | double  rv[2]; | 
| 377 |  |  | double  d, sinp, cosp; | 
| 378 | greg | 2.62 | COLOR  scol; | 
| 379 | greg | 2.58 | int  maxiter, ntrials, nstarget, nstaken; | 
| 380 | greg | 2.62 | int  i; | 
| 381 | greg | 2.13 | /* quick test */ | 
| 382 |  |  | if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && | 
| 383 |  |  | (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) | 
| 384 |  |  | return; | 
| 385 | greg | 2.2 | /* set up sample coordinates */ | 
| 386 | greg | 2.70 | getperpendicular(u, np->pnorm, rand_samp); | 
| 387 | greg | 2.2 | fcross(v, np->pnorm, u); | 
| 388 |  |  | /* compute reflection */ | 
| 389 | greg | 2.5 | if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && | 
| 390 | greg | 2.63 | rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { | 
| 391 | greg | 2.58 | nstarget = 1; | 
| 392 | greg | 2.55 | if (specjitter > 1.5) { /* multiple samples? */ | 
| 393 | greg | 2.63 | nstarget = specjitter*np->rp->rweight + .5; | 
| 394 | greg | 2.58 | if (sr.rweight <= minweight*nstarget) | 
| 395 |  |  | nstarget = sr.rweight/minweight; | 
| 396 |  |  | if (nstarget > 1) { | 
| 397 |  |  | d = 1./nstarget; | 
| 398 |  |  | scalecolor(sr.rcoef, d); | 
| 399 | greg | 2.56 | sr.rweight *= d; | 
| 400 | greg | 2.55 | } else | 
| 401 | greg | 2.58 | nstarget = 1; | 
| 402 | greg | 2.55 | } | 
| 403 | greg | 2.58 | setcolor(scol, 0., 0., 0.); | 
| 404 | greg | 2.60 | dimlist[ndims++] = (int)(size_t)np->mp; | 
| 405 | greg | 2.58 | maxiter = MAXITER*nstarget; | 
| 406 |  |  | for (nstaken = ntrials = 0; nstaken < nstarget && | 
| 407 |  |  | ntrials < maxiter; ntrials++) { | 
| 408 |  |  | if (ntrials) | 
| 409 | greg | 2.34 | d = frandom(); | 
| 410 |  |  | else | 
| 411 |  |  | d = urand(ilhash(dimlist,ndims)+samplendx); | 
| 412 |  |  | multisamp(rv, 2, d); | 
| 413 |  |  | d = 2.0*PI * rv[0]; | 
| 414 | gwlarson | 2.37 | cosp = tcos(d); | 
| 415 |  |  | sinp = tsin(d); | 
| 416 | greg | 2.55 | if ((0. <= specjitter) & (specjitter < 1.)) | 
| 417 |  |  | rv[1] = 1.0 - specjitter*rv[1]; | 
| 418 | greg | 2.34 | if (rv[1] <= FTINY) | 
| 419 |  |  | d = 1.0; | 
| 420 |  |  | else | 
| 421 |  |  | d = sqrt( np->alpha2 * -log(rv[1]) ); | 
| 422 |  |  | for (i = 0; i < 3; i++) | 
| 423 |  |  | h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); | 
| 424 | greg | 2.63 | d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); | 
| 425 |  |  | VSUM(sr.rdir, np->rp->rdir, h, d); | 
| 426 | greg | 2.58 | /* sample rejection test */ | 
| 427 | greg | 2.63 | if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) | 
| 428 | greg | 2.55 | continue; | 
| 429 |  |  | checknorm(sr.rdir); | 
| 430 | greg | 2.58 | if (nstarget > 1) {     /* W-G-M-D adjustment */ | 
| 431 | greg | 2.59 | if (nstaken) rayclear(&sr); | 
| 432 | greg | 2.58 | rayvalue(&sr); | 
| 433 | greg | 2.63 | d = 2./(1. + np->rp->rod/d); | 
| 434 | greg | 2.58 | scalecolor(sr.rcol, d); | 
| 435 |  |  | addcolor(scol, sr.rcol); | 
| 436 |  |  | } else { | 
| 437 |  |  | rayvalue(&sr); | 
| 438 |  |  | multcolor(sr.rcol, sr.rcoef); | 
| 439 | greg | 2.63 | addcolor(np->rp->rcol, sr.rcol); | 
| 440 | greg | 2.34 | } | 
| 441 | greg | 2.58 | ++nstaken; | 
| 442 |  |  | } | 
| 443 |  |  | if (nstarget > 1) {             /* final W-G-M-D weighting */ | 
| 444 |  |  | multcolor(scol, sr.rcoef); | 
| 445 |  |  | d = (double)nstarget/ntrials; | 
| 446 |  |  | scalecolor(scol, d); | 
| 447 | greg | 2.63 | addcolor(np->rp->rcol, scol); | 
| 448 | greg | 2.34 | } | 
| 449 | greg | 2.2 | ndims--; | 
| 450 |  |  | } | 
| 451 |  |  | /* compute transmission */ | 
| 452 | greg | 2.50 | copycolor(sr.rcoef, np->mcolor);        /* modified by color */ | 
| 453 |  |  | scalecolor(sr.rcoef, np->tspec); | 
| 454 | greg | 2.8 | if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && | 
| 455 | greg | 2.63 | rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { | 
| 456 | greg | 2.58 | nstarget = 1; | 
| 457 | greg | 2.55 | if (specjitter > 1.5) { /* multiple samples? */ | 
| 458 | greg | 2.63 | nstarget = specjitter*np->rp->rweight + .5; | 
| 459 | greg | 2.58 | if (sr.rweight <= minweight*nstarget) | 
| 460 |  |  | nstarget = sr.rweight/minweight; | 
| 461 |  |  | if (nstarget > 1) { | 
| 462 |  |  | d = 1./nstarget; | 
| 463 | greg | 2.56 | scalecolor(sr.rcoef, d); | 
| 464 |  |  | sr.rweight *= d; | 
| 465 | greg | 2.55 | } else | 
| 466 | greg | 2.58 | nstarget = 1; | 
| 467 | greg | 2.55 | } | 
| 468 | greg | 2.60 | dimlist[ndims++] = (int)(size_t)np->mp; | 
| 469 | greg | 2.58 | maxiter = MAXITER*nstarget; | 
| 470 |  |  | for (nstaken = ntrials = 0; nstaken < nstarget && | 
| 471 |  |  | ntrials < maxiter; ntrials++) { | 
| 472 |  |  | if (ntrials) | 
| 473 | greg | 2.34 | d = frandom(); | 
| 474 |  |  | else | 
| 475 | greg | 2.58 | d = urand(ilhash(dimlist,ndims)+samplendx); | 
| 476 | greg | 2.34 | multisamp(rv, 2, d); | 
| 477 |  |  | d = 2.0*PI * rv[0]; | 
| 478 | gwlarson | 2.37 | cosp = tcos(d); | 
| 479 |  |  | sinp = tsin(d); | 
| 480 | greg | 2.55 | if ((0. <= specjitter) & (specjitter < 1.)) | 
| 481 |  |  | rv[1] = 1.0 - specjitter*rv[1]; | 
| 482 | greg | 2.34 | if (rv[1] <= FTINY) | 
| 483 |  |  | d = 1.0; | 
| 484 |  |  | else | 
| 485 | gwlarson | 2.37 | d = sqrt( np->alpha2 * -log(rv[1]) ); | 
| 486 | greg | 2.34 | for (i = 0; i < 3; i++) | 
| 487 |  |  | sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); | 
| 488 | greg | 2.58 | /* sample rejection test */ | 
| 489 | greg | 2.63 | if (DOT(sr.rdir, np->rp->ron) >= -FTINY) | 
| 490 | greg | 2.55 | continue; | 
| 491 |  |  | normalize(sr.rdir);     /* OK, normalize */ | 
| 492 | greg | 2.59 | if (nstaken)            /* multi-sampling */ | 
| 493 | greg | 2.55 | rayclear(&sr); | 
| 494 |  |  | rayvalue(&sr); | 
| 495 |  |  | multcolor(sr.rcol, sr.rcoef); | 
| 496 | greg | 2.63 | addcolor(np->rp->rcol, sr.rcol); | 
| 497 | greg | 2.58 | ++nstaken; | 
| 498 | greg | 2.34 | } | 
| 499 | greg | 2.8 | ndims--; | 
| 500 |  |  | } | 
| 501 | greg | 1.1 | } |