| 1 |
greg |
1.1 |
#ifndef lint |
| 2 |
greg |
2.38 |
static const char RCSid[] = "$Id$"; |
| 3 |
greg |
1.1 |
#endif |
| 4 |
|
|
/* |
| 5 |
|
|
* normal.c - shading function for normal materials. |
| 6 |
|
|
* |
| 7 |
|
|
* 8/19/85 |
| 8 |
|
|
* 12/19/85 - added stuff for metals. |
| 9 |
|
|
* 6/26/87 - improved specular model. |
| 10 |
|
|
* 9/28/87 - added model for translucent materials. |
| 11 |
greg |
2.2 |
* Later changes described in delta comments. |
| 12 |
greg |
1.1 |
*/ |
| 13 |
|
|
|
| 14 |
greg |
2.38 |
/* ==================================================================== |
| 15 |
|
|
* The Radiance Software License, Version 1.0 |
| 16 |
|
|
* |
| 17 |
|
|
* Copyright (c) 1990 - 2002 The Regents of the University of California, |
| 18 |
|
|
* through Lawrence Berkeley National Laboratory. All rights reserved. |
| 19 |
|
|
* |
| 20 |
|
|
* Redistribution and use in source and binary forms, with or without |
| 21 |
|
|
* modification, are permitted provided that the following conditions |
| 22 |
|
|
* are met: |
| 23 |
|
|
* |
| 24 |
|
|
* 1. Redistributions of source code must retain the above copyright |
| 25 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 26 |
|
|
* |
| 27 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
| 28 |
|
|
* notice, this list of conditions and the following disclaimer in |
| 29 |
|
|
* the documentation and/or other materials provided with the |
| 30 |
|
|
* distribution. |
| 31 |
|
|
* |
| 32 |
|
|
* 3. The end-user documentation included with the redistribution, |
| 33 |
|
|
* if any, must include the following acknowledgment: |
| 34 |
|
|
* "This product includes Radiance software |
| 35 |
|
|
* (http://radsite.lbl.gov/) |
| 36 |
|
|
* developed by the Lawrence Berkeley National Laboratory |
| 37 |
|
|
* (http://www.lbl.gov/)." |
| 38 |
|
|
* Alternately, this acknowledgment may appear in the software itself, |
| 39 |
|
|
* if and wherever such third-party acknowledgments normally appear. |
| 40 |
|
|
* |
| 41 |
|
|
* 4. The names "Radiance," "Lawrence Berkeley National Laboratory" |
| 42 |
|
|
* and "The Regents of the University of California" must |
| 43 |
|
|
* not be used to endorse or promote products derived from this |
| 44 |
|
|
* software without prior written permission. For written |
| 45 |
|
|
* permission, please contact [email protected]. |
| 46 |
|
|
* |
| 47 |
|
|
* 5. Products derived from this software may not be called "Radiance", |
| 48 |
|
|
* nor may "Radiance" appear in their name, without prior written |
| 49 |
|
|
* permission of Lawrence Berkeley National Laboratory. |
| 50 |
|
|
* |
| 51 |
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED |
| 52 |
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 53 |
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 54 |
|
|
* DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR |
| 55 |
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 56 |
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 57 |
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| 58 |
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 59 |
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 60 |
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| 61 |
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 62 |
|
|
* SUCH DAMAGE. |
| 63 |
|
|
* ==================================================================== |
| 64 |
|
|
* |
| 65 |
|
|
* This software consists of voluntary contributions made by many |
| 66 |
|
|
* individuals on behalf of Lawrence Berkeley National Laboratory. For more |
| 67 |
|
|
* information on Lawrence Berkeley National Laboratory, please see |
| 68 |
|
|
* <http://www.lbl.gov/>. |
| 69 |
|
|
*/ |
| 70 |
|
|
|
| 71 |
greg |
1.1 |
#include "ray.h" |
| 72 |
|
|
|
| 73 |
|
|
#include "otypes.h" |
| 74 |
|
|
|
| 75 |
greg |
2.2 |
#include "random.h" |
| 76 |
|
|
|
| 77 |
greg |
2.34 |
#ifndef MAXITER |
| 78 |
|
|
#define MAXITER 10 /* maximum # specular ray attempts */ |
| 79 |
|
|
#endif |
| 80 |
greg |
2.38 |
/* estimate of Fresnel function */ |
| 81 |
|
|
#define FRESNE(ci) (exp(-6.0*(ci)) - 0.00247875217) |
| 82 |
greg |
2.34 |
|
| 83 |
greg |
2.38 |
static void gaussamp(); |
| 84 |
greg |
2.24 |
|
| 85 |
greg |
1.1 |
/* |
| 86 |
greg |
2.22 |
* This routine implements the isotropic Gaussian |
| 87 |
|
|
* model described by Ward in Siggraph `92 article. |
| 88 |
greg |
1.1 |
* We orient the surface towards the incoming ray, so a single |
| 89 |
|
|
* surface can be used to represent an infinitely thin object. |
| 90 |
|
|
* |
| 91 |
|
|
* Arguments for MAT_PLASTIC and MAT_METAL are: |
| 92 |
|
|
* red grn blu specular-frac. facet-slope |
| 93 |
|
|
* |
| 94 |
|
|
* Arguments for MAT_TRANS are: |
| 95 |
|
|
* red grn blu rspec rough trans tspec |
| 96 |
|
|
*/ |
| 97 |
|
|
|
| 98 |
greg |
2.2 |
/* specularity flags */ |
| 99 |
|
|
#define SP_REFL 01 /* has reflected specular component */ |
| 100 |
|
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 101 |
greg |
2.11 |
#define SP_PURE 04 /* purely specular (zero roughness) */ |
| 102 |
|
|
#define SP_FLAT 010 /* flat reflecting surface */ |
| 103 |
|
|
#define SP_RBLT 020 /* reflection below sample threshold */ |
| 104 |
|
|
#define SP_TBLT 040 /* transmission below threshold */ |
| 105 |
greg |
1.1 |
|
| 106 |
greg |
1.3 |
typedef struct { |
| 107 |
|
|
OBJREC *mp; /* material pointer */ |
| 108 |
greg |
2.16 |
RAY *rp; /* ray pointer */ |
| 109 |
greg |
2.2 |
short specfl; /* specularity flags, defined above */ |
| 110 |
greg |
1.1 |
COLOR mcolor; /* color of this material */ |
| 111 |
|
|
COLOR scolor; /* color of specular component */ |
| 112 |
|
|
FVECT vrefl; /* vector in direction of reflected ray */ |
| 113 |
greg |
1.14 |
FVECT prdir; /* vector in transmitted direction */ |
| 114 |
greg |
2.2 |
double alpha2; /* roughness squared */ |
| 115 |
greg |
1.1 |
double rdiff, rspec; /* reflected specular, diffuse */ |
| 116 |
|
|
double trans; /* transmissivity */ |
| 117 |
|
|
double tdiff, tspec; /* transmitted specular, diffuse */ |
| 118 |
|
|
FVECT pnorm; /* perturbed surface normal */ |
| 119 |
|
|
double pdot; /* perturbed dot product */ |
| 120 |
greg |
1.3 |
} NORMDAT; /* normal material data */ |
| 121 |
|
|
|
| 122 |
|
|
|
| 123 |
greg |
2.38 |
static void |
| 124 |
greg |
1.3 |
dirnorm(cval, np, ldir, omega) /* compute source contribution */ |
| 125 |
|
|
COLOR cval; /* returned coefficient */ |
| 126 |
|
|
register NORMDAT *np; /* material data */ |
| 127 |
|
|
FVECT ldir; /* light source direction */ |
| 128 |
|
|
double omega; /* light source size */ |
| 129 |
|
|
{ |
| 130 |
greg |
1.1 |
double ldot; |
| 131 |
greg |
2.38 |
double ldiff; |
| 132 |
greg |
2.16 |
double dtmp, d2; |
| 133 |
|
|
FVECT vtmp; |
| 134 |
greg |
1.3 |
COLOR ctmp; |
| 135 |
|
|
|
| 136 |
|
|
setcolor(cval, 0.0, 0.0, 0.0); |
| 137 |
|
|
|
| 138 |
|
|
ldot = DOT(np->pnorm, ldir); |
| 139 |
|
|
|
| 140 |
|
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
| 141 |
|
|
return; /* wrong side */ |
| 142 |
|
|
|
| 143 |
greg |
2.38 |
/* Fresnel estimate */ |
| 144 |
|
|
ldiff = np->rdiff; |
| 145 |
|
|
if (np->specfl & SP_PURE && (np->rspec > FTINY & ldiff > FTINY)) |
| 146 |
|
|
ldiff *= 1. - FRESNE(fabs(ldot)); |
| 147 |
|
|
|
| 148 |
|
|
if (ldot > FTINY && ldiff > FTINY) { |
| 149 |
greg |
1.3 |
/* |
| 150 |
greg |
1.4 |
* Compute and add diffuse reflected component to returned |
| 151 |
|
|
* color. The diffuse reflected component will always be |
| 152 |
|
|
* modified by the color of the material. |
| 153 |
greg |
1.3 |
*/ |
| 154 |
|
|
copycolor(ctmp, np->mcolor); |
| 155 |
greg |
2.38 |
dtmp = ldot * omega * ldiff / PI; |
| 156 |
greg |
1.3 |
scalecolor(ctmp, dtmp); |
| 157 |
|
|
addcolor(cval, ctmp); |
| 158 |
|
|
} |
| 159 |
greg |
2.2 |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { |
| 160 |
greg |
1.3 |
/* |
| 161 |
|
|
* Compute specular reflection coefficient using |
| 162 |
|
|
* gaussian distribution model. |
| 163 |
|
|
*/ |
| 164 |
greg |
2.3 |
/* roughness */ |
| 165 |
greg |
2.16 |
dtmp = np->alpha2; |
| 166 |
greg |
2.3 |
/* + source if flat */ |
| 167 |
|
|
if (np->specfl & SP_FLAT) |
| 168 |
greg |
2.16 |
dtmp += omega/(4.0*PI); |
| 169 |
greg |
2.23 |
/* half vector */ |
| 170 |
greg |
2.18 |
vtmp[0] = ldir[0] - np->rp->rdir[0]; |
| 171 |
|
|
vtmp[1] = ldir[1] - np->rp->rdir[1]; |
| 172 |
|
|
vtmp[2] = ldir[2] - np->rp->rdir[2]; |
| 173 |
greg |
2.16 |
d2 = DOT(vtmp, np->pnorm); |
| 174 |
greg |
2.23 |
d2 *= d2; |
| 175 |
|
|
d2 = (DOT(vtmp,vtmp) - d2) / d2; |
| 176 |
greg |
1.3 |
/* gaussian */ |
| 177 |
greg |
2.16 |
dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); |
| 178 |
greg |
1.3 |
/* worth using? */ |
| 179 |
|
|
if (dtmp > FTINY) { |
| 180 |
|
|
copycolor(ctmp, np->scolor); |
| 181 |
greg |
2.14 |
dtmp *= omega * sqrt(ldot/np->pdot); |
| 182 |
greg |
1.3 |
scalecolor(ctmp, dtmp); |
| 183 |
|
|
addcolor(cval, ctmp); |
| 184 |
|
|
} |
| 185 |
|
|
} |
| 186 |
|
|
if (ldot < -FTINY && np->tdiff > FTINY) { |
| 187 |
|
|
/* |
| 188 |
|
|
* Compute diffuse transmission. |
| 189 |
|
|
*/ |
| 190 |
|
|
copycolor(ctmp, np->mcolor); |
| 191 |
|
|
dtmp = -ldot * omega * np->tdiff / PI; |
| 192 |
|
|
scalecolor(ctmp, dtmp); |
| 193 |
|
|
addcolor(cval, ctmp); |
| 194 |
|
|
} |
| 195 |
greg |
2.2 |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { |
| 196 |
greg |
1.3 |
/* |
| 197 |
greg |
1.4 |
* Compute specular transmission. Specular transmission |
| 198 |
greg |
1.13 |
* is always modified by material color. |
| 199 |
greg |
1.3 |
*/ |
| 200 |
|
|
/* roughness + source */ |
| 201 |
greg |
2.19 |
dtmp = np->alpha2 + omega/PI; |
| 202 |
greg |
1.3 |
/* gaussian */ |
| 203 |
greg |
2.21 |
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); |
| 204 |
greg |
1.3 |
/* worth using? */ |
| 205 |
|
|
if (dtmp > FTINY) { |
| 206 |
greg |
1.13 |
copycolor(ctmp, np->mcolor); |
| 207 |
greg |
2.18 |
dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); |
| 208 |
greg |
1.13 |
scalecolor(ctmp, dtmp); |
| 209 |
greg |
1.3 |
addcolor(cval, ctmp); |
| 210 |
|
|
} |
| 211 |
|
|
} |
| 212 |
|
|
} |
| 213 |
|
|
|
| 214 |
|
|
|
| 215 |
greg |
2.38 |
int |
| 216 |
greg |
2.2 |
m_normal(m, r) /* color a ray that hit something normal */ |
| 217 |
greg |
1.3 |
register OBJREC *m; |
| 218 |
|
|
register RAY *r; |
| 219 |
|
|
{ |
| 220 |
|
|
NORMDAT nd; |
| 221 |
greg |
2.38 |
double fest; |
| 222 |
greg |
1.9 |
double transtest, transdist; |
| 223 |
greg |
2.29 |
double mirtest, mirdist; |
| 224 |
|
|
int hastexture; |
| 225 |
|
|
double d; |
| 226 |
greg |
1.1 |
COLOR ctmp; |
| 227 |
|
|
register int i; |
| 228 |
|
|
/* easy shadow test */ |
| 229 |
|
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS) |
| 230 |
greg |
2.27 |
return(1); |
| 231 |
greg |
2.2 |
|
| 232 |
|
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) |
| 233 |
|
|
objerror(m, USER, "bad number of arguments"); |
| 234 |
greg |
2.29 |
/* check for back side */ |
| 235 |
|
|
if (r->rod < 0.0) { |
| 236 |
|
|
if (!backvis && m->otype != MAT_TRANS) { |
| 237 |
|
|
raytrans(r); |
| 238 |
|
|
return(1); |
| 239 |
|
|
} |
| 240 |
|
|
flipsurface(r); /* reorient if backvis */ |
| 241 |
|
|
} |
| 242 |
greg |
1.3 |
nd.mp = m; |
| 243 |
greg |
2.16 |
nd.rp = r; |
| 244 |
greg |
1.1 |
/* get material color */ |
| 245 |
greg |
1.3 |
setcolor(nd.mcolor, m->oargs.farg[0], |
| 246 |
greg |
1.1 |
m->oargs.farg[1], |
| 247 |
|
|
m->oargs.farg[2]); |
| 248 |
|
|
/* get roughness */ |
| 249 |
greg |
2.2 |
nd.specfl = 0; |
| 250 |
greg |
1.3 |
nd.alpha2 = m->oargs.farg[4]; |
| 251 |
greg |
2.2 |
if ((nd.alpha2 *= nd.alpha2) <= FTINY) |
| 252 |
|
|
nd.specfl |= SP_PURE; |
| 253 |
greg |
2.29 |
if (r->ro != NULL && isflat(r->ro->otype)) |
| 254 |
|
|
nd.specfl |= SP_FLAT; |
| 255 |
greg |
1.1 |
/* get modifiers */ |
| 256 |
|
|
raytexture(r, m->omod); |
| 257 |
greg |
2.29 |
if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) |
| 258 |
|
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
| 259 |
|
|
else { |
| 260 |
|
|
VCOPY(nd.pnorm, r->ron); |
| 261 |
|
|
nd.pdot = r->rod; |
| 262 |
|
|
} |
| 263 |
greg |
1.13 |
if (nd.pdot < .001) |
| 264 |
|
|
nd.pdot = .001; /* non-zero for dirnorm() */ |
| 265 |
greg |
1.3 |
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
| 266 |
greg |
2.29 |
mirtest = transtest = 0; |
| 267 |
|
|
mirdist = transdist = r->rot; |
| 268 |
greg |
2.30 |
nd.rspec = m->oargs.farg[3]; |
| 269 |
greg |
2.38 |
/* compute Fresnel approx. */ |
| 270 |
|
|
if (nd.specfl & SP_PURE && nd.rspec > FTINY) { |
| 271 |
|
|
fest = FRESNE(r->rod); |
| 272 |
|
|
nd.rspec += fest*(1. - nd.rspec); |
| 273 |
|
|
} else |
| 274 |
|
|
fest = 0.; |
| 275 |
greg |
1.3 |
/* compute transmission */ |
| 276 |
greg |
1.1 |
if (m->otype == MAT_TRANS) { |
| 277 |
greg |
1.3 |
nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); |
| 278 |
|
|
nd.tspec = nd.trans * m->oargs.farg[6]; |
| 279 |
|
|
nd.tdiff = nd.trans - nd.tspec; |
| 280 |
greg |
2.2 |
if (nd.tspec > FTINY) { |
| 281 |
|
|
nd.specfl |= SP_TRAN; |
| 282 |
greg |
2.5 |
/* check threshold */ |
| 283 |
greg |
2.25 |
if (!(nd.specfl & SP_PURE) && |
| 284 |
|
|
specthresh >= nd.tspec-FTINY) |
| 285 |
greg |
2.5 |
nd.specfl |= SP_TBLT; |
| 286 |
greg |
2.29 |
if (!hastexture || r->crtype & SHADOW) { |
| 287 |
greg |
2.2 |
VCOPY(nd.prdir, r->rdir); |
| 288 |
|
|
transtest = 2; |
| 289 |
|
|
} else { |
| 290 |
|
|
for (i = 0; i < 3; i++) /* perturb */ |
| 291 |
greg |
2.19 |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
| 292 |
greg |
2.7 |
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 293 |
|
|
normalize(nd.prdir); /* OK */ |
| 294 |
|
|
else |
| 295 |
|
|
VCOPY(nd.prdir, r->rdir); |
| 296 |
greg |
2.2 |
} |
| 297 |
greg |
1.14 |
} |
| 298 |
greg |
1.1 |
} else |
| 299 |
greg |
1.3 |
nd.tdiff = nd.tspec = nd.trans = 0.0; |
| 300 |
greg |
1.1 |
/* transmitted ray */ |
| 301 |
gregl |
2.36 |
if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { |
| 302 |
greg |
1.3 |
RAY lr; |
| 303 |
|
|
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
| 304 |
greg |
1.14 |
VCOPY(lr.rdir, nd.prdir); |
| 305 |
greg |
1.1 |
rayvalue(&lr); |
| 306 |
greg |
1.3 |
scalecolor(lr.rcol, nd.tspec); |
| 307 |
greg |
1.8 |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
| 308 |
greg |
1.1 |
addcolor(r->rcol, lr.rcol); |
| 309 |
greg |
1.9 |
transtest *= bright(lr.rcol); |
| 310 |
|
|
transdist = r->rot + lr.rt; |
| 311 |
greg |
1.1 |
} |
| 312 |
greg |
2.11 |
} else |
| 313 |
|
|
transtest = 0; |
| 314 |
greg |
2.2 |
|
| 315 |
greg |
2.29 |
if (r->crtype & SHADOW) { /* the rest is shadow */ |
| 316 |
|
|
r->rt = transdist; |
| 317 |
greg |
2.27 |
return(1); |
| 318 |
greg |
2.30 |
} |
| 319 |
|
|
/* get specular reflection */ |
| 320 |
|
|
if (nd.rspec > FTINY) { |
| 321 |
|
|
nd.specfl |= SP_REFL; |
| 322 |
|
|
/* compute specular color */ |
| 323 |
greg |
2.38 |
if (m->otype != MAT_METAL) { |
| 324 |
|
|
setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec); |
| 325 |
|
|
} else if (fest > FTINY) { |
| 326 |
|
|
d = nd.rspec*(1. - fest); |
| 327 |
|
|
for (i = 0; i < 3; i++) |
| 328 |
|
|
nd.scolor[i] = fest + nd.mcolor[i]*d; |
| 329 |
|
|
} else { |
| 330 |
greg |
2.30 |
copycolor(nd.scolor, nd.mcolor); |
| 331 |
greg |
2.38 |
scalecolor(nd.scolor, nd.rspec); |
| 332 |
|
|
} |
| 333 |
greg |
2.30 |
/* check threshold */ |
| 334 |
|
|
if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) |
| 335 |
|
|
nd.specfl |= SP_RBLT; |
| 336 |
|
|
/* compute reflected ray */ |
| 337 |
|
|
for (i = 0; i < 3; i++) |
| 338 |
|
|
nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i]; |
| 339 |
|
|
/* penetration? */ |
| 340 |
|
|
if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY) |
| 341 |
|
|
for (i = 0; i < 3; i++) /* safety measure */ |
| 342 |
|
|
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 343 |
gregl |
2.36 |
} |
| 344 |
|
|
/* reflected ray */ |
| 345 |
|
|
if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { |
| 346 |
|
|
RAY lr; |
| 347 |
|
|
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
| 348 |
|
|
VCOPY(lr.rdir, nd.vrefl); |
| 349 |
|
|
rayvalue(&lr); |
| 350 |
|
|
multcolor(lr.rcol, nd.scolor); |
| 351 |
|
|
addcolor(r->rcol, lr.rcol); |
| 352 |
|
|
if (!hastexture && nd.specfl & SP_FLAT) { |
| 353 |
|
|
mirtest = 2.*bright(lr.rcol); |
| 354 |
|
|
mirdist = r->rot + lr.rt; |
| 355 |
greg |
2.30 |
} |
| 356 |
|
|
} |
| 357 |
greg |
2.29 |
} |
| 358 |
greg |
1.1 |
/* diffuse reflection */ |
| 359 |
greg |
1.3 |
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
| 360 |
greg |
1.1 |
|
| 361 |
greg |
2.2 |
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
| 362 |
greg |
2.27 |
return(1); /* 100% pure specular */ |
| 363 |
greg |
2.3 |
|
| 364 |
gregl |
2.36 |
if (!(nd.specfl & SP_PURE)) |
| 365 |
|
|
gaussamp(r, &nd); /* checks *BLT flags */ |
| 366 |
greg |
2.2 |
|
| 367 |
greg |
1.3 |
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 368 |
greg |
2.31 |
ambient(ctmp, r, hastexture?nd.pnorm:r->ron); |
| 369 |
greg |
2.5 |
if (nd.specfl & SP_RBLT) |
| 370 |
|
|
scalecolor(ctmp, 1.0-nd.trans); |
| 371 |
|
|
else |
| 372 |
|
|
scalecolor(ctmp, nd.rdiff); |
| 373 |
greg |
1.3 |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
| 374 |
greg |
1.2 |
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 375 |
|
|
} |
| 376 |
greg |
1.3 |
if (nd.tdiff > FTINY) { /* ambient from other side */ |
| 377 |
greg |
1.1 |
flipsurface(r); |
| 378 |
greg |
2.32 |
if (hastexture) { |
| 379 |
|
|
FVECT bnorm; |
| 380 |
|
|
bnorm[0] = -nd.pnorm[0]; |
| 381 |
|
|
bnorm[1] = -nd.pnorm[1]; |
| 382 |
|
|
bnorm[2] = -nd.pnorm[2]; |
| 383 |
|
|
ambient(ctmp, r, bnorm); |
| 384 |
|
|
} else |
| 385 |
|
|
ambient(ctmp, r, r->ron); |
| 386 |
greg |
2.5 |
if (nd.specfl & SP_TBLT) |
| 387 |
|
|
scalecolor(ctmp, nd.trans); |
| 388 |
|
|
else |
| 389 |
|
|
scalecolor(ctmp, nd.tdiff); |
| 390 |
greg |
1.13 |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
| 391 |
greg |
1.1 |
addcolor(r->rcol, ctmp); |
| 392 |
|
|
flipsurface(r); |
| 393 |
|
|
} |
| 394 |
greg |
1.3 |
/* add direct component */ |
| 395 |
|
|
direct(r, dirnorm, &nd); |
| 396 |
greg |
1.9 |
/* check distance */ |
| 397 |
greg |
2.29 |
d = bright(r->rcol); |
| 398 |
|
|
if (transtest > d) |
| 399 |
greg |
1.9 |
r->rt = transdist; |
| 400 |
greg |
2.29 |
else if (mirtest > d) |
| 401 |
|
|
r->rt = mirdist; |
| 402 |
greg |
2.27 |
|
| 403 |
|
|
return(1); |
| 404 |
greg |
2.2 |
} |
| 405 |
|
|
|
| 406 |
|
|
|
| 407 |
greg |
2.38 |
static void |
| 408 |
greg |
2.2 |
gaussamp(r, np) /* sample gaussian specular */ |
| 409 |
|
|
RAY *r; |
| 410 |
|
|
register NORMDAT *np; |
| 411 |
|
|
{ |
| 412 |
|
|
RAY sr; |
| 413 |
|
|
FVECT u, v, h; |
| 414 |
|
|
double rv[2]; |
| 415 |
|
|
double d, sinp, cosp; |
| 416 |
greg |
2.34 |
int niter; |
| 417 |
greg |
2.2 |
register int i; |
| 418 |
greg |
2.13 |
/* quick test */ |
| 419 |
|
|
if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && |
| 420 |
|
|
(np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) |
| 421 |
|
|
return; |
| 422 |
greg |
2.2 |
/* set up sample coordinates */ |
| 423 |
|
|
v[0] = v[1] = v[2] = 0.0; |
| 424 |
|
|
for (i = 0; i < 3; i++) |
| 425 |
|
|
if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6) |
| 426 |
|
|
break; |
| 427 |
|
|
v[i] = 1.0; |
| 428 |
|
|
fcross(u, v, np->pnorm); |
| 429 |
|
|
normalize(u); |
| 430 |
|
|
fcross(v, np->pnorm, u); |
| 431 |
|
|
/* compute reflection */ |
| 432 |
greg |
2.5 |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
| 433 |
greg |
2.2 |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
| 434 |
|
|
dimlist[ndims++] = (int)np->mp; |
| 435 |
greg |
2.34 |
for (niter = 0; niter < MAXITER; niter++) { |
| 436 |
|
|
if (niter) |
| 437 |
|
|
d = frandom(); |
| 438 |
|
|
else |
| 439 |
|
|
d = urand(ilhash(dimlist,ndims)+samplendx); |
| 440 |
|
|
multisamp(rv, 2, d); |
| 441 |
|
|
d = 2.0*PI * rv[0]; |
| 442 |
gwlarson |
2.37 |
cosp = tcos(d); |
| 443 |
|
|
sinp = tsin(d); |
| 444 |
greg |
2.34 |
rv[1] = 1.0 - specjitter*rv[1]; |
| 445 |
|
|
if (rv[1] <= FTINY) |
| 446 |
|
|
d = 1.0; |
| 447 |
|
|
else |
| 448 |
|
|
d = sqrt( np->alpha2 * -log(rv[1]) ); |
| 449 |
|
|
for (i = 0; i < 3; i++) |
| 450 |
|
|
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); |
| 451 |
|
|
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
| 452 |
|
|
for (i = 0; i < 3; i++) |
| 453 |
|
|
sr.rdir[i] = r->rdir[i] + d*h[i]; |
| 454 |
|
|
if (DOT(sr.rdir, r->ron) > FTINY) { |
| 455 |
|
|
rayvalue(&sr); |
| 456 |
|
|
multcolor(sr.rcol, np->scolor); |
| 457 |
|
|
addcolor(r->rcol, sr.rcol); |
| 458 |
|
|
break; |
| 459 |
|
|
} |
| 460 |
|
|
} |
| 461 |
greg |
2.2 |
ndims--; |
| 462 |
|
|
} |
| 463 |
|
|
/* compute transmission */ |
| 464 |
greg |
2.8 |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 465 |
|
|
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 466 |
|
|
dimlist[ndims++] = (int)np->mp; |
| 467 |
greg |
2.34 |
for (niter = 0; niter < MAXITER; niter++) { |
| 468 |
|
|
if (niter) |
| 469 |
|
|
d = frandom(); |
| 470 |
|
|
else |
| 471 |
|
|
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
| 472 |
|
|
multisamp(rv, 2, d); |
| 473 |
|
|
d = 2.0*PI * rv[0]; |
| 474 |
gwlarson |
2.37 |
cosp = tcos(d); |
| 475 |
|
|
sinp = tsin(d); |
| 476 |
greg |
2.34 |
rv[1] = 1.0 - specjitter*rv[1]; |
| 477 |
|
|
if (rv[1] <= FTINY) |
| 478 |
|
|
d = 1.0; |
| 479 |
|
|
else |
| 480 |
gwlarson |
2.37 |
d = sqrt( np->alpha2 * -log(rv[1]) ); |
| 481 |
greg |
2.34 |
for (i = 0; i < 3; i++) |
| 482 |
|
|
sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); |
| 483 |
|
|
if (DOT(sr.rdir, r->ron) < -FTINY) { |
| 484 |
|
|
normalize(sr.rdir); /* OK, normalize */ |
| 485 |
|
|
rayvalue(&sr); |
| 486 |
|
|
scalecolor(sr.rcol, np->tspec); |
| 487 |
|
|
multcolor(sr.rcol, np->mcolor); /* modified */ |
| 488 |
|
|
addcolor(r->rcol, sr.rcol); |
| 489 |
|
|
break; |
| 490 |
|
|
} |
| 491 |
|
|
} |
| 492 |
greg |
2.8 |
ndims--; |
| 493 |
|
|
} |
| 494 |
greg |
1.1 |
} |