| 1 |
greg |
1.1 |
/* Copyright (c) 1986 Regents of the University of California */ |
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint |
| 4 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
| 5 |
|
|
#endif |
| 6 |
|
|
|
| 7 |
|
|
/* |
| 8 |
|
|
* normal.c - shading function for normal materials. |
| 9 |
|
|
* |
| 10 |
|
|
* 8/19/85 |
| 11 |
|
|
* 12/19/85 - added stuff for metals. |
| 12 |
|
|
* 6/26/87 - improved specular model. |
| 13 |
|
|
* 9/28/87 - added model for translucent materials. |
| 14 |
|
|
*/ |
| 15 |
|
|
|
| 16 |
|
|
#include "ray.h" |
| 17 |
|
|
|
| 18 |
|
|
#include "source.h" |
| 19 |
|
|
|
| 20 |
|
|
#include "otypes.h" |
| 21 |
|
|
|
| 22 |
|
|
/* |
| 23 |
|
|
* This routine uses portions of the reflection |
| 24 |
|
|
* model described by Cook and Torrance. |
| 25 |
|
|
* The computation of specular components has been simplified by |
| 26 |
|
|
* numerous approximations and ommisions to improve speed. |
| 27 |
|
|
* We orient the surface towards the incoming ray, so a single |
| 28 |
|
|
* surface can be used to represent an infinitely thin object. |
| 29 |
|
|
* |
| 30 |
|
|
* Arguments for MAT_PLASTIC and MAT_METAL are: |
| 31 |
|
|
* red grn blu specular-frac. facet-slope |
| 32 |
|
|
* |
| 33 |
|
|
* Arguments for MAT_TRANS are: |
| 34 |
|
|
* red grn blu rspec rough trans tspec |
| 35 |
|
|
*/ |
| 36 |
|
|
|
| 37 |
|
|
#define BSPEC(m) (6.0) /* specularity parameter b */ |
| 38 |
|
|
|
| 39 |
|
|
|
| 40 |
|
|
m_normal(m, r) /* color a ray which hit something normal */ |
| 41 |
|
|
register OBJREC *m; |
| 42 |
|
|
register RAY *r; |
| 43 |
|
|
{ |
| 44 |
|
|
double exp(); |
| 45 |
|
|
COLOR mcolor; /* color of this material */ |
| 46 |
|
|
COLOR scolor; /* color of specular component */ |
| 47 |
|
|
FVECT vrefl; /* vector in direction of reflected ray */ |
| 48 |
|
|
double alpha2; /* roughness squared times 2 */ |
| 49 |
|
|
RAY lr; /* ray to illumination source */ |
| 50 |
|
|
double rdiff, rspec; /* reflected specular, diffuse */ |
| 51 |
|
|
double trans; /* transmissivity */ |
| 52 |
|
|
double tdiff, tspec; /* transmitted specular, diffuse */ |
| 53 |
|
|
FVECT pnorm; /* perturbed surface normal */ |
| 54 |
|
|
double pdot; /* perturbed dot product */ |
| 55 |
|
|
double ldot; |
| 56 |
|
|
double omega; |
| 57 |
|
|
double dtmp; |
| 58 |
|
|
COLOR ctmp; |
| 59 |
|
|
register int i; |
| 60 |
|
|
|
| 61 |
|
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) |
| 62 |
|
|
objerror(m, USER, "bad # arguments"); |
| 63 |
|
|
/* easy shadow test */ |
| 64 |
|
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS) |
| 65 |
|
|
return; |
| 66 |
|
|
/* get material color */ |
| 67 |
|
|
setcolor(mcolor, m->oargs.farg[0], |
| 68 |
|
|
m->oargs.farg[1], |
| 69 |
|
|
m->oargs.farg[2]); |
| 70 |
|
|
/* get roughness */ |
| 71 |
|
|
alpha2 = m->oargs.farg[4]; |
| 72 |
|
|
alpha2 *= 2.0 * alpha2; |
| 73 |
|
|
/* reorient if necessary */ |
| 74 |
|
|
if (r->rod < 0.0) |
| 75 |
|
|
flipsurface(r); |
| 76 |
|
|
/* get modifiers */ |
| 77 |
|
|
raytexture(r, m->omod); |
| 78 |
|
|
pdot = raynormal(pnorm, r); /* perturb normal */ |
| 79 |
|
|
multcolor(mcolor, r->pcol); /* modify material color */ |
| 80 |
|
|
/* get specular component */ |
| 81 |
|
|
rspec = m->oargs.farg[3]; |
| 82 |
|
|
|
| 83 |
|
|
if (rspec > FTINY) { /* has specular component */ |
| 84 |
|
|
/* compute specular color */ |
| 85 |
|
|
if (m->otype == MAT_METAL) |
| 86 |
|
|
copycolor(scolor, mcolor); |
| 87 |
|
|
else |
| 88 |
|
|
setcolor(scolor, 1.0, 1.0, 1.0); |
| 89 |
|
|
scalecolor(scolor, rspec); |
| 90 |
|
|
/* improved model */ |
| 91 |
|
|
dtmp = exp(-BSPEC(m)*pdot); |
| 92 |
|
|
for (i = 0; i < 3; i++) |
| 93 |
|
|
colval(scolor,i) += (1.0-colval(scolor,i))*dtmp; |
| 94 |
|
|
rspec += (1.0-rspec)*dtmp; |
| 95 |
|
|
/* compute reflected ray */ |
| 96 |
|
|
for (i = 0; i < 3; i++) |
| 97 |
|
|
vrefl[i] = r->rdir[i] + 2.0*pdot*pnorm[i]; |
| 98 |
|
|
|
| 99 |
|
|
if (alpha2 <= FTINY && !(r->crtype & SHADOW)) |
| 100 |
|
|
if (rayorigin(&lr, r, REFLECTED, rspec) == 0) { |
| 101 |
|
|
VCOPY(lr.rdir, vrefl); |
| 102 |
|
|
rayvalue(&lr); |
| 103 |
|
|
multcolor(lr.rcol, scolor); |
| 104 |
|
|
addcolor(r->rcol, lr.rcol); |
| 105 |
|
|
} |
| 106 |
|
|
} |
| 107 |
|
|
|
| 108 |
|
|
if (m->otype == MAT_TRANS) { |
| 109 |
|
|
trans = m->oargs.farg[5]*(1.0 - rspec); |
| 110 |
|
|
tspec = trans * m->oargs.farg[6]; |
| 111 |
|
|
tdiff = trans - tspec; |
| 112 |
|
|
} else |
| 113 |
|
|
tdiff = tspec = trans = 0.0; |
| 114 |
|
|
/* transmitted ray */ |
| 115 |
|
|
if (tspec > FTINY && alpha2 <= FTINY) |
| 116 |
|
|
if (rayorigin(&lr, r, TRANS, tspec) == 0) { |
| 117 |
|
|
VCOPY(lr.rdir, r->rdir); |
| 118 |
|
|
rayvalue(&lr); |
| 119 |
|
|
scalecolor(lr.rcol, tspec); |
| 120 |
|
|
addcolor(r->rcol, lr.rcol); |
| 121 |
|
|
} |
| 122 |
|
|
if (r->crtype & SHADOW) /* the rest is shadow */ |
| 123 |
|
|
return; |
| 124 |
|
|
/* diffuse reflection */ |
| 125 |
|
|
rdiff = 1.0 - trans - rspec; |
| 126 |
|
|
|
| 127 |
|
|
if (rdiff <= FTINY && tdiff <= FTINY && alpha2 <= FTINY) |
| 128 |
|
|
return; /* purely specular */ |
| 129 |
|
|
|
| 130 |
greg |
1.2 |
if (rdiff > FTINY) { /* ambient from this side */ |
| 131 |
|
|
ambient(ctmp, r); |
| 132 |
|
|
if (alpha2 <= FTINY) |
| 133 |
|
|
scalecolor(ctmp, rdiff); |
| 134 |
|
|
else |
| 135 |
|
|
scalecolor(ctmp, 1.0-trans); |
| 136 |
|
|
multcolor(ctmp, mcolor); /* modified by material color */ |
| 137 |
|
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 138 |
|
|
} |
| 139 |
|
|
if (tdiff > FTINY) { /* ambient from other side */ |
| 140 |
greg |
1.1 |
flipsurface(r); |
| 141 |
greg |
1.2 |
ambient(ctmp, r); |
| 142 |
|
|
if (alpha2 <= FTINY) |
| 143 |
|
|
scalecolor(ctmp, tdiff); |
| 144 |
|
|
else |
| 145 |
|
|
scalecolor(ctmp, trans); |
| 146 |
greg |
1.1 |
multcolor(ctmp, mcolor); |
| 147 |
|
|
addcolor(r->rcol, ctmp); |
| 148 |
|
|
flipsurface(r); |
| 149 |
|
|
} |
| 150 |
|
|
|
| 151 |
|
|
for (i = 0; i < nsources; i++) { /* add specular and diffuse */ |
| 152 |
|
|
|
| 153 |
|
|
if ((omega = srcray(&lr, r, i)) == 0.0) |
| 154 |
|
|
continue; /* bad source */ |
| 155 |
|
|
|
| 156 |
|
|
ldot = DOT(pnorm, lr.rdir); |
| 157 |
|
|
|
| 158 |
|
|
if (ldot < 0.0 ? trans <= FTINY : trans >= 1.0-FTINY) |
| 159 |
|
|
continue; /* wrong side */ |
| 160 |
|
|
|
| 161 |
|
|
rayvalue(&lr); /* compute light ray value */ |
| 162 |
|
|
|
| 163 |
|
|
if (intens(lr.rcol) <= FTINY) |
| 164 |
|
|
continue; /* didn't hit light source */ |
| 165 |
|
|
|
| 166 |
|
|
if (ldot > FTINY && rdiff > FTINY) { |
| 167 |
|
|
/* |
| 168 |
|
|
* Compute and add diffuse component to returned color. |
| 169 |
|
|
* The diffuse component will always be modified by the |
| 170 |
|
|
* color of the material. |
| 171 |
|
|
*/ |
| 172 |
|
|
copycolor(ctmp, lr.rcol); |
| 173 |
|
|
dtmp = ldot * omega * rdiff / PI; |
| 174 |
|
|
scalecolor(ctmp, dtmp); |
| 175 |
|
|
multcolor(ctmp, mcolor); |
| 176 |
|
|
addcolor(r->rcol, ctmp); |
| 177 |
|
|
} |
| 178 |
|
|
if (ldot > FTINY && rspec > FTINY && alpha2 > FTINY) { |
| 179 |
|
|
/* |
| 180 |
|
|
* Compute specular reflection coefficient using |
| 181 |
|
|
* gaussian distribution model. |
| 182 |
|
|
*/ |
| 183 |
|
|
/* roughness + source */ |
| 184 |
|
|
dtmp = alpha2 + omega/(2.0*PI); |
| 185 |
|
|
/* gaussian */ |
| 186 |
|
|
dtmp = exp((DOT(vrefl,lr.rdir)-1.)/dtmp)/(2.*PI)/dtmp; |
| 187 |
|
|
/* worth using? */ |
| 188 |
|
|
if (dtmp > FTINY) { |
| 189 |
|
|
copycolor(ctmp, lr.rcol); |
| 190 |
|
|
dtmp *= omega; |
| 191 |
|
|
scalecolor(ctmp, dtmp); |
| 192 |
|
|
multcolor(ctmp, scolor); |
| 193 |
|
|
addcolor(r->rcol, ctmp); |
| 194 |
|
|
} |
| 195 |
|
|
} |
| 196 |
|
|
if (ldot < -FTINY && tdiff > FTINY) { |
| 197 |
|
|
/* |
| 198 |
|
|
* Compute diffuse transmission. |
| 199 |
|
|
*/ |
| 200 |
|
|
copycolor(ctmp, lr.rcol); |
| 201 |
|
|
dtmp = -ldot * omega * tdiff / PI; |
| 202 |
|
|
scalecolor(ctmp, dtmp); |
| 203 |
|
|
multcolor(ctmp, mcolor); |
| 204 |
|
|
addcolor(r->rcol, ctmp); |
| 205 |
|
|
} |
| 206 |
|
|
if (ldot < -FTINY && tspec > FTINY && alpha2 > FTINY) { |
| 207 |
|
|
/* |
| 208 |
|
|
* Compute specular transmission. |
| 209 |
|
|
*/ |
| 210 |
|
|
/* roughness + source */ |
| 211 |
|
|
dtmp = alpha2 + omega/(2.0*PI); |
| 212 |
|
|
/* gaussian */ |
| 213 |
|
|
dtmp = exp((DOT(r->rdir,lr.rdir)-1.)/dtmp)/(2.*PI)/dtmp; |
| 214 |
|
|
/* worth using? */ |
| 215 |
|
|
if (dtmp > FTINY) { |
| 216 |
|
|
copycolor(ctmp, lr.rcol); |
| 217 |
|
|
dtmp *= tspec * omega; |
| 218 |
|
|
scalecolor(ctmp, dtmp); |
| 219 |
|
|
addcolor(r->rcol, ctmp); |
| 220 |
|
|
} |
| 221 |
|
|
} |
| 222 |
|
|
} |
| 223 |
|
|
} |