| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: noise3.c,v 2.11 2010/09/03 21:16:50 greg Exp $"; |
| 3 |
#endif |
| 4 |
/* |
| 5 |
* noise3.c - noise functions for random textures. |
| 6 |
* |
| 7 |
* Credit for the smooth algorithm goes to Ken Perlin. |
| 8 |
* (ref. SIGGRAPH Vol 19, No 3, pp 287-96) |
| 9 |
*/ |
| 10 |
|
| 11 |
#include "copyright.h" |
| 12 |
|
| 13 |
#include "ray.h" |
| 14 |
#include "func.h" |
| 15 |
|
| 16 |
#define A 0 |
| 17 |
#define B 1 |
| 18 |
#define C 2 |
| 19 |
#define D 3 |
| 20 |
|
| 21 |
#define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z)) |
| 22 |
#define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z)) |
| 23 |
#define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z)) |
| 24 |
#define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z)) |
| 25 |
|
| 26 |
#define hpoly1(t) ((2.0*t-3.0)*t*t+1.0) |
| 27 |
#define hpoly2(t) (-2.0*t+3.0)*t*t |
| 28 |
#define hpoly3(t) ((t-2.0)*t+1.0)*t |
| 29 |
#define hpoly4(t) (t-1.0)*t*t |
| 30 |
|
| 31 |
#define hermite(p0,p1,r0,r1,t) ( p0*hpoly1(t) + \ |
| 32 |
p1*hpoly2(t) + \ |
| 33 |
r0*hpoly3(t) + \ |
| 34 |
r1*hpoly4(t) ) |
| 35 |
|
| 36 |
static char noise_name[4][8] = {"noise3x", "noise3y", "noise3z", "noise3"}; |
| 37 |
static char fnoise_name[] = "fnoise3"; |
| 38 |
static char hermite_name[] = "hermite"; |
| 39 |
|
| 40 |
static long xlim[3][2]; |
| 41 |
static double xarg[3]; |
| 42 |
|
| 43 |
#define EPSILON .001 /* error allowed in fractal */ |
| 44 |
|
| 45 |
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z)) |
| 46 |
|
| 47 |
static double l_noise3(char *nam); |
| 48 |
static double l_hermite(char *nm); |
| 49 |
static double * noise3(double xnew[3]); |
| 50 |
static void interpolate(double f[4], int i, int n); |
| 51 |
static double frand(long s); |
| 52 |
static double fnoise3(double p[3]); |
| 53 |
|
| 54 |
|
| 55 |
static double |
| 56 |
l_noise3( /* compute a noise function */ |
| 57 |
register char *nam |
| 58 |
) |
| 59 |
{ |
| 60 |
register int i; |
| 61 |
double x[3]; |
| 62 |
/* get point */ |
| 63 |
x[0] = argument(1); |
| 64 |
x[1] = argument(2); |
| 65 |
x[2] = argument(3); |
| 66 |
/* make appropriate call */ |
| 67 |
if (nam == fnoise_name) |
| 68 |
return(fnoise3(x)); |
| 69 |
i = 4; |
| 70 |
while (i--) |
| 71 |
if (nam == noise_name[i]) |
| 72 |
return(noise3(x)[i]); |
| 73 |
eputs(nam); |
| 74 |
eputs(": called l_noise3!\n"); |
| 75 |
quit(1); |
| 76 |
return 1; /* pro forma return */ |
| 77 |
} |
| 78 |
|
| 79 |
|
| 80 |
static double |
| 81 |
l_hermite(char *nm) /* library call for hermite interpolation */ |
| 82 |
{ |
| 83 |
double t; |
| 84 |
|
| 85 |
t = argument(5); |
| 86 |
return( hermite(argument(1), argument(2), |
| 87 |
argument(3), argument(4), t) ); |
| 88 |
} |
| 89 |
|
| 90 |
|
| 91 |
extern void |
| 92 |
setnoisefuncs(void) /* add noise functions to library */ |
| 93 |
{ |
| 94 |
register int i; |
| 95 |
|
| 96 |
funset(hermite_name, 5, ':', l_hermite); |
| 97 |
funset(fnoise_name, 3, ':', l_noise3); |
| 98 |
i = 4; |
| 99 |
while (i--) |
| 100 |
funset(noise_name[i], 3, ':', l_noise3); |
| 101 |
} |
| 102 |
|
| 103 |
|
| 104 |
static double * |
| 105 |
noise3( /* compute the noise function */ |
| 106 |
register double xnew[3] |
| 107 |
) |
| 108 |
{ |
| 109 |
static double x[3] = {-100000.0, -100000.0, -100000.0}; |
| 110 |
static double f[4]; |
| 111 |
|
| 112 |
if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2]) |
| 113 |
return(f); |
| 114 |
x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2]; |
| 115 |
xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1; |
| 116 |
xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1; |
| 117 |
xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1; |
| 118 |
xarg[0] = x[0] - xlim[0][0]; |
| 119 |
xarg[1] = x[1] - xlim[1][0]; |
| 120 |
xarg[2] = x[2] - xlim[2][0]; |
| 121 |
interpolate(f, 0, 3); |
| 122 |
return(f); |
| 123 |
} |
| 124 |
|
| 125 |
|
| 126 |
static void |
| 127 |
interpolate( |
| 128 |
double f[4], |
| 129 |
register int i, |
| 130 |
register int n |
| 131 |
) |
| 132 |
{ |
| 133 |
double f0[4], f1[4], hp1, hp2; |
| 134 |
|
| 135 |
if (n == 0) { |
| 136 |
f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 137 |
f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 138 |
f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 139 |
f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 140 |
} else { |
| 141 |
n--; |
| 142 |
interpolate(f0, i, n); |
| 143 |
interpolate(f1, i | 1<<n, n); |
| 144 |
hp1 = hpoly1(xarg[n]); hp2 = hpoly2(xarg[n]); |
| 145 |
f[A] = f0[A]*hp1 + f1[A]*hp2; |
| 146 |
f[B] = f0[B]*hp1 + f1[B]*hp2; |
| 147 |
f[C] = f0[C]*hp1 + f1[C]*hp2; |
| 148 |
f[D] = f0[D]*hp1 + f1[D]*hp2 + |
| 149 |
f0[n]*hpoly3(xarg[n]) + f1[n]*hpoly4(xarg[n]); |
| 150 |
} |
| 151 |
} |
| 152 |
|
| 153 |
|
| 154 |
static double |
| 155 |
frand( /* get random number from seed */ |
| 156 |
register long s |
| 157 |
) |
| 158 |
{ |
| 159 |
s = s<<13 ^ s; |
| 160 |
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0); |
| 161 |
} |
| 162 |
|
| 163 |
|
| 164 |
static double |
| 165 |
fnoise3( /* compute fractal noise function */ |
| 166 |
double p[3] |
| 167 |
) |
| 168 |
{ |
| 169 |
long t[3], v[3], beg[3]; |
| 170 |
double fval[8], fc; |
| 171 |
int branch; |
| 172 |
register long s; |
| 173 |
register int i, j; |
| 174 |
/* get starting cube */ |
| 175 |
s = (long)(1.0/EPSILON); |
| 176 |
for (i = 0; i < 3; i++) { |
| 177 |
t[i] = s*p[i]; |
| 178 |
beg[i] = s*floor(p[i]); |
| 179 |
} |
| 180 |
for (j = 0; j < 8; j++) { |
| 181 |
for (i = 0; i < 3; i++) { |
| 182 |
v[i] = beg[i]; |
| 183 |
if (j & 1<<i) |
| 184 |
v[i] += s; |
| 185 |
} |
| 186 |
fval[j] = frand3(v[0],v[1],v[2]); |
| 187 |
} |
| 188 |
/* compute fractal */ |
| 189 |
for ( ; ; ) { |
| 190 |
fc = 0.0; |
| 191 |
for (j = 0; j < 8; j++) |
| 192 |
fc += fval[j]; |
| 193 |
fc *= 0.125; |
| 194 |
if ((s >>= 1) == 0) |
| 195 |
return(fc); /* close enough */ |
| 196 |
branch = 0; |
| 197 |
for (i = 0; i < 3; i++) { /* do center */ |
| 198 |
v[i] = beg[i] + s; |
| 199 |
if (t[i] > v[i]) { |
| 200 |
branch |= 1<<i; |
| 201 |
} |
| 202 |
} |
| 203 |
fc += s*EPSILON*frand3(v[0],v[1],v[2]); |
| 204 |
fval[~branch & 7] = fc; |
| 205 |
for (i = 0; i < 3; i++) { /* do faces */ |
| 206 |
if (branch & 1<<i) |
| 207 |
v[i] += s; |
| 208 |
else |
| 209 |
v[i] -= s; |
| 210 |
fc = 0.0; |
| 211 |
for (j = 0; j < 8; j++) |
| 212 |
if (~(j^branch) & 1<<i) |
| 213 |
fc += fval[j]; |
| 214 |
fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
| 215 |
fval[~(branch^1<<i) & 7] = fc; |
| 216 |
v[i] = beg[i] + s; |
| 217 |
} |
| 218 |
for (i = 0; i < 3; i++) { /* do edges */ |
| 219 |
if ((j = i+1) == 3) j = 0; |
| 220 |
if (branch & 1<<j) |
| 221 |
v[j] += s; |
| 222 |
else |
| 223 |
v[j] -= s; |
| 224 |
if (++j == 3) j = 0; |
| 225 |
if (branch & 1<<j) |
| 226 |
v[j] += s; |
| 227 |
else |
| 228 |
v[j] -= s; |
| 229 |
fc = fval[branch & ~(1<<i)]; |
| 230 |
fc += fval[branch | 1<<i]; |
| 231 |
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
| 232 |
fval[branch^1<<i] = fc; |
| 233 |
if ((j = i+1) == 3) j = 0; |
| 234 |
v[j] = beg[j] + s; |
| 235 |
if (++j == 3) j = 0; |
| 236 |
v[j] = beg[j] + s; |
| 237 |
} |
| 238 |
for (i = 0; i < 3; i++) /* new cube */ |
| 239 |
if (branch & 1<<i) |
| 240 |
beg[i] += s; |
| 241 |
} |
| 242 |
} |