| 1 |
greg |
1.1 |
/* Copyright (c) 1988 Regents of the University of California */ |
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint |
| 4 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
| 5 |
|
|
#endif |
| 6 |
|
|
|
| 7 |
|
|
/* |
| 8 |
|
|
* noise3.c - noise functions for random textures. |
| 9 |
|
|
* |
| 10 |
|
|
* Credit for the smooth algorithm goes to Ken Perlin. |
| 11 |
|
|
* (ref. SIGGRAPH Vol 19, No 3, pp 287-96) |
| 12 |
|
|
* |
| 13 |
|
|
* 4/15/86 |
| 14 |
|
|
* 5/19/88 Added fractal noise function |
| 15 |
|
|
*/ |
| 16 |
|
|
|
| 17 |
greg |
2.2 |
#include <math.h> |
| 18 |
greg |
1.1 |
|
| 19 |
|
|
#define A 0 |
| 20 |
|
|
#define B 1 |
| 21 |
|
|
#define C 2 |
| 22 |
|
|
#define D 3 |
| 23 |
|
|
|
| 24 |
|
|
#define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z)) |
| 25 |
|
|
#define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z)) |
| 26 |
|
|
#define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z)) |
| 27 |
|
|
#define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z)) |
| 28 |
|
|
|
| 29 |
greg |
1.7 |
#define hpoly1(t) ((2.0*t-3.0)*t*t+1.0) |
| 30 |
|
|
#define hpoly2(t) (-2.0*t+3.0)*t*t |
| 31 |
|
|
#define hpoly3(t) ((t-2.0)*t+1.0)*t |
| 32 |
|
|
#define hpoly4(t) (t-1.0)*t*t |
| 33 |
greg |
1.1 |
|
| 34 |
greg |
1.7 |
#define hermite(p0,p1,r0,r1,t) ( p0*hpoly1(t) + \ |
| 35 |
|
|
p1*hpoly2(t) + \ |
| 36 |
|
|
r0*hpoly3(t) + \ |
| 37 |
|
|
r1*hpoly4(t) ) |
| 38 |
|
|
|
| 39 |
greg |
1.6 |
static char noise_name[4][8] = {"noise3a", "noise3b", "noise3c", "noise3"}; |
| 40 |
greg |
1.5 |
static char fnoise_name[] = "fnoise3"; |
| 41 |
|
|
static char hermite_name[] = "hermite"; |
| 42 |
greg |
1.1 |
|
| 43 |
greg |
1.5 |
double *noise3(), fnoise3(), argument(), frand(); |
| 44 |
greg |
2.3 |
static interpolate(); |
| 45 |
greg |
1.5 |
|
| 46 |
greg |
1.1 |
static long xlim[3][2]; |
| 47 |
|
|
static double xarg[3]; |
| 48 |
|
|
|
| 49 |
greg |
1.2 |
#define EPSILON .0001 /* error allowed in fractal */ |
| 50 |
greg |
1.1 |
|
| 51 |
greg |
1.3 |
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z)) |
| 52 |
greg |
1.1 |
|
| 53 |
|
|
|
| 54 |
greg |
1.5 |
static double |
| 55 |
|
|
l_noise3(nam) /* compute a noise function */ |
| 56 |
|
|
register char *nam; |
| 57 |
greg |
1.1 |
{ |
| 58 |
greg |
1.5 |
register int i; |
| 59 |
|
|
double x[3]; |
| 60 |
|
|
/* get point */ |
| 61 |
|
|
x[0] = argument(1); |
| 62 |
|
|
x[1] = argument(2); |
| 63 |
|
|
x[2] = argument(3); |
| 64 |
|
|
/* make appropriate call */ |
| 65 |
|
|
if (nam == fnoise_name) |
| 66 |
|
|
return(fnoise3(x)); |
| 67 |
|
|
i = 4; |
| 68 |
|
|
while (i--) |
| 69 |
|
|
if (nam == noise_name[i]) |
| 70 |
|
|
return(noise3(x)[i]); |
| 71 |
greg |
1.6 |
eputs(nam); |
| 72 |
|
|
eputs(": called l_noise3!\n"); |
| 73 |
greg |
1.5 |
quit(1); |
| 74 |
greg |
1.1 |
} |
| 75 |
|
|
|
| 76 |
|
|
|
| 77 |
|
|
double |
| 78 |
greg |
1.5 |
l_hermite() /* library call for hermite interpolation */ |
| 79 |
greg |
1.1 |
{ |
| 80 |
greg |
1.5 |
double t; |
| 81 |
|
|
|
| 82 |
|
|
t = argument(5); |
| 83 |
|
|
return( hermite(argument(1), argument(2), |
| 84 |
|
|
argument(3), argument(4), t) ); |
| 85 |
greg |
1.1 |
} |
| 86 |
|
|
|
| 87 |
|
|
|
| 88 |
greg |
1.5 |
setnoisefuncs() /* add noise functions to library */ |
| 89 |
greg |
1.1 |
{ |
| 90 |
greg |
1.5 |
register int i; |
| 91 |
greg |
1.1 |
|
| 92 |
greg |
1.5 |
funset(hermite_name, 5, ':', l_hermite); |
| 93 |
|
|
funset(fnoise_name, 3, ':', l_noise3); |
| 94 |
|
|
i = 4; |
| 95 |
|
|
while (i--) |
| 96 |
|
|
funset(noise_name[i], 3, ':', l_noise3); |
| 97 |
greg |
1.1 |
} |
| 98 |
|
|
|
| 99 |
|
|
|
| 100 |
|
|
double * |
| 101 |
|
|
noise3(xnew) /* compute the noise function */ |
| 102 |
|
|
register double xnew[3]; |
| 103 |
|
|
{ |
| 104 |
|
|
static double x[3] = {-100000.0, -100000.0, -100000.0}; |
| 105 |
|
|
static double f[4]; |
| 106 |
|
|
|
| 107 |
|
|
if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2]) |
| 108 |
|
|
return(f); |
| 109 |
|
|
x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2]; |
| 110 |
|
|
xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1; |
| 111 |
|
|
xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1; |
| 112 |
|
|
xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1; |
| 113 |
|
|
xarg[0] = x[0] - xlim[0][0]; |
| 114 |
|
|
xarg[1] = x[1] - xlim[1][0]; |
| 115 |
|
|
xarg[2] = x[2] - xlim[2][0]; |
| 116 |
|
|
interpolate(f, 0, 3); |
| 117 |
|
|
return(f); |
| 118 |
|
|
} |
| 119 |
|
|
|
| 120 |
|
|
|
| 121 |
|
|
static |
| 122 |
|
|
interpolate(f, i, n) |
| 123 |
|
|
double f[4]; |
| 124 |
|
|
register int i, n; |
| 125 |
|
|
{ |
| 126 |
greg |
1.7 |
double f0[4], f1[4], hp1, hp2; |
| 127 |
greg |
1.1 |
|
| 128 |
|
|
if (n == 0) { |
| 129 |
|
|
f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 130 |
|
|
f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 131 |
|
|
f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 132 |
|
|
f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
| 133 |
|
|
} else { |
| 134 |
|
|
n--; |
| 135 |
|
|
interpolate(f0, i, n); |
| 136 |
|
|
interpolate(f1, i | 1<<n, n); |
| 137 |
greg |
1.7 |
hp1 = hpoly1(xarg[n]); hp2 = hpoly2(xarg[n]); |
| 138 |
|
|
f[A] = f0[A]*hp1 + f1[A]*hp2; |
| 139 |
|
|
f[B] = f0[B]*hp1 + f1[B]*hp2; |
| 140 |
|
|
f[C] = f0[C]*hp1 + f1[C]*hp2; |
| 141 |
|
|
f[D] = f0[D]*hp1 + f1[D]*hp2 + |
| 142 |
|
|
f0[n]*hpoly3(xarg[n]) + f1[n]*hpoly4(xarg[n]); |
| 143 |
greg |
1.1 |
} |
| 144 |
|
|
} |
| 145 |
|
|
|
| 146 |
|
|
|
| 147 |
|
|
double |
| 148 |
|
|
frand(s) /* get random number from seed */ |
| 149 |
|
|
register long s; |
| 150 |
|
|
{ |
| 151 |
|
|
s = s<<13 ^ s; |
| 152 |
|
|
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0); |
| 153 |
|
|
} |
| 154 |
|
|
|
| 155 |
|
|
|
| 156 |
|
|
double |
| 157 |
|
|
fnoise3(p) /* compute fractal noise function */ |
| 158 |
greg |
1.3 |
double p[3]; |
| 159 |
greg |
1.1 |
{ |
| 160 |
greg |
1.4 |
long t[3], v[3], beg[3]; |
| 161 |
greg |
1.3 |
double fval[8], fc; |
| 162 |
|
|
int branch; |
| 163 |
greg |
1.4 |
register long s; |
| 164 |
greg |
1.1 |
register int i, j; |
| 165 |
|
|
/* get starting cube */ |
| 166 |
greg |
1.3 |
s = (long)(1.0/EPSILON); |
| 167 |
|
|
for (i = 0; i < 3; i++) { |
| 168 |
|
|
t[i] = s*p[i]; |
| 169 |
|
|
beg[i] = s*floor(p[i]); |
| 170 |
|
|
} |
| 171 |
greg |
1.1 |
for (j = 0; j < 8; j++) { |
| 172 |
|
|
for (i = 0; i < 3; i++) { |
| 173 |
|
|
v[i] = beg[i]; |
| 174 |
|
|
if (j & 1<<i) |
| 175 |
greg |
1.3 |
v[i] += s; |
| 176 |
greg |
1.1 |
} |
| 177 |
|
|
fval[j] = frand3(v[0],v[1],v[2]); |
| 178 |
|
|
} |
| 179 |
|
|
/* compute fractal */ |
| 180 |
|
|
for ( ; ; ) { |
| 181 |
greg |
1.4 |
fc = 0.0; |
| 182 |
|
|
for (j = 0; j < 8; j++) |
| 183 |
|
|
fc += fval[j]; |
| 184 |
|
|
fc *= 0.125; |
| 185 |
|
|
if ((s >>= 1) == 0) |
| 186 |
|
|
return(fc); /* close enough */ |
| 187 |
greg |
1.1 |
branch = 0; |
| 188 |
|
|
for (i = 0; i < 3; i++) { /* do center */ |
| 189 |
|
|
v[i] = beg[i] + s; |
| 190 |
greg |
1.3 |
if (t[i] > v[i]) { |
| 191 |
greg |
1.1 |
branch |= 1<<i; |
| 192 |
greg |
1.3 |
} |
| 193 |
greg |
1.1 |
} |
| 194 |
greg |
1.3 |
fc += s*EPSILON*frand3(v[0],v[1],v[2]); |
| 195 |
greg |
1.1 |
fval[~branch & 7] = fc; |
| 196 |
|
|
for (i = 0; i < 3; i++) { /* do faces */ |
| 197 |
|
|
if (branch & 1<<i) |
| 198 |
|
|
v[i] += s; |
| 199 |
|
|
else |
| 200 |
|
|
v[i] -= s; |
| 201 |
|
|
fc = 0.0; |
| 202 |
|
|
for (j = 0; j < 8; j++) |
| 203 |
|
|
if (~(j^branch) & 1<<i) |
| 204 |
|
|
fc += fval[j]; |
| 205 |
greg |
1.3 |
fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
| 206 |
greg |
1.1 |
fval[~(branch^1<<i) & 7] = fc; |
| 207 |
|
|
v[i] = beg[i] + s; |
| 208 |
|
|
} |
| 209 |
|
|
for (i = 0; i < 3; i++) { /* do edges */ |
| 210 |
|
|
j = (i+1)%3; |
| 211 |
|
|
if (branch & 1<<j) |
| 212 |
|
|
v[j] += s; |
| 213 |
|
|
else |
| 214 |
|
|
v[j] -= s; |
| 215 |
|
|
j = (i+2)%3; |
| 216 |
|
|
if (branch & 1<<j) |
| 217 |
|
|
v[j] += s; |
| 218 |
|
|
else |
| 219 |
|
|
v[j] -= s; |
| 220 |
|
|
fc = fval[branch & ~(1<<i)]; |
| 221 |
|
|
fc += fval[branch | 1<<i]; |
| 222 |
greg |
1.3 |
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
| 223 |
greg |
1.1 |
fval[branch^1<<i] = fc; |
| 224 |
|
|
j = (i+1)%3; |
| 225 |
|
|
v[j] = beg[j] + s; |
| 226 |
|
|
j = (i+2)%3; |
| 227 |
|
|
v[j] = beg[j] + s; |
| 228 |
|
|
} |
| 229 |
|
|
for (i = 0; i < 3; i++) /* new cube */ |
| 230 |
|
|
if (branch & 1<<i) |
| 231 |
|
|
beg[i] += s; |
| 232 |
|
|
} |
| 233 |
|
|
} |